Posted on Categories:Thermodynamics, 热力学, 物理代写

物理代写|热力学作业代写THERMODYNAMICS代考|EGR248 What Are Partial Molar Quantities?

5出现了热力学的其他提法。统计热力学，或称统计力学，关注于从粒子的微观行为对其集体运动的统计预测。1909年，Constantin Carathéodory以公理的形式提出了一种纯数学的方法，这种描述通常被称为几何热力学

avatest.org 热力学Thermodynamics作业代写，免费提交作业要求， 满意后付款，成绩80\%以下全额退款，安全省心无顾虑。专业硕 博写手团队，所有订单可靠准时，保证 100% 原创。avatest.org™， 最高质量的热力学Thermodynamics作业代写，服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面，考虑到同学们的经济条件，在保障代写质量的前提下，我们为客户提供最合理的价格。 由于统计Statistics作业种类很多，同时其中的大部分作业在字数上都没有具体要求，因此热力学Thermodynamics作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

avatest.org™ 为您的留学生涯保驾护航 在物理physics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的物理physics代写服务。我们的专家在热力学Thermodynamics代写方面经验极为丰富，各种热力学Thermodynamics相关的作业也就用不着 说。

avatest™

物理代写|热力学作业代写THERMODYNAMICS代考|What Are Partial Molar Quantities?

When a homogeneous mixture of several chemicals $A, B, C \ldots$ is formed there are some mixtures for which the thermodynamic quantities, such as volume and internal energy behave additively. Such mixtures are termed ideal. That means that the resulting total thermodynamic quantity $X$ can be evaluated as the sum, $\Sigma_{\mathrm{B}} n_{\mathrm{B}} X_{\mathrm{B}}^{}$, where $X_{\mathrm{B}}^{}$ is the molar quantity $X$ of pure $B$.

In general, however, mixtures are non-ideal, because of the specific interactions of the different substances at the molecular level. The molar quantity $X$ of pure $B$ then must be replaced by what is called the partial molar quantity $X_{\mathrm{B}}$. In a sense, this represents the molar property of B within the mixture of a certain composition as opposed to B in the pure state; it is therefore defined as the effect of adding a mole of $B$ to a mixture of otherwise unchanged composition.

Thus, the partial molar quantity $X_{B}$ (which is an intensive quantity) of substance $B$ in a mixture is defined by
$$X_{\mathrm{B}}=\left(\partial X / \partial n_{\mathrm{B}}\right){T, p, n{\mathrm{A} \neq \mathrm{B}} \prime}$$
where $n_{\mathrm{A}} \neq n_{\mathrm{B}}$ means all the $n^{\prime}$ s except $n_{\mathrm{B}}$ are held constant; for a pure substance $\mathrm{B}, X_{\mathrm{B}}=$ $X / n_{\mathrm{B}}=X_{\mathrm{m}}$. The total differential of an extensive quantity $X$ of a mixture can thus be written as
$$\mathrm{d} X=(\partial X / \partial T){p, n{\mathrm{B}}} \mathrm{d} T+(\partial X / \partial p){T, n{\mathrm{B}}} \mathrm{d} p+\sum_{\mathrm{B}} X_{\mathrm{B}} \mathrm{d} n_{\mathrm{B}}$$
and, by the use of Euler’s theorem (see Question 1.10.2), as
$$X=\sum_{\mathrm{B}} n_{\mathrm{B}} X_{\mathrm{B}}$$
or recast as
$$X_{\mathrm{m}}=\sum_{\mathrm{B}} x_{\mathrm{B}} X_{\mathrm{B}}$$

物理代写|热力学作业代写THERMODYNAMICS代考|What Are Mixtures, Solutions and Molality?

Mixture is the word reserved for systems (whether they be gases, liquids and solids) containing more than one substance; all components in the mixture are treated equally. On the other hand, the term solution is reserved for liquids or solids containing more than one substance where one substance is deemed to be a solvent and the others are solutes; these entities are not treated in the same way. If the sum of the mole fractions of the solutes is small compared with unity the solution is termed dilute.

The composition of a solution is usually expressed in terms of the molalities of the solutes. The molality of a solute $\mathrm{B} m_{\mathrm{B}}$ in a solvent A of molar mass $M_{\mathrm{A}}$ is defined by
$$m_{\mathrm{B}}=n_{\mathrm{B}} /\left(n_{\mathrm{A}} M_{\mathrm{A}}\right),$$
and is related to the mole fraction $x_{\mathrm{B}}$ by
$$x_{\mathrm{B}}=m_{\mathrm{B}} \frac{\mathrm{M}{\mathrm{A}}}{1+\Sigma{\mathrm{B}} m_{\mathrm{B}}},$$
or
$$m_{\mathrm{B}}=\frac{x_{\mathrm{B}}}{M_{A}\left(1-\Sigma_{\mathrm{B}} x_{\mathrm{B}}\right)} .$$

物理代写|热力学作业代写THERMODYNAMICS代考|What Are Partial Molar Quantities?

$$X_{\mathrm{B}}=\left(\partial X / \partial n_{\mathrm{B}}\right) T, p, n \mathrm{~A} \neq \mathrm{B}$$

$$\mathrm{d} X=(\partial X / \partial T) p, n \mathrm{Bd} T+(\partial X / \partial p) T, n \mathrm{Bd} p+\sum_{\mathrm{B}} X_{\mathrm{B}} \mathrm{d} n_{\mathrm{B}}$$

$$X=\sum_{\mathrm{B}} n_{\mathrm{B}} X_{\mathrm{B}}$$

$$X_{\mathrm{m}}=\sum_{\mathrm{B}} x_{\mathrm{B}} X_{\mathrm{B}}$$

物理代写|热力学作业代写 THERMODYNAMICS代考|What Are Mixtures, Solutions and Molality?

$$m_{\mathrm{B}}=n_{\mathrm{B}} /\left(n_{\mathrm{A}} M_{\mathrm{A}}\right)$$

$$x_{\mathrm{B}}=m_{\mathrm{B}} \frac{\mathrm{MA}}{1+\Sigma \mathrm{B} m_{\mathrm{B}}},$$

$$m_{\mathrm{B}}=\frac{x_{\mathrm{B}}}{M_{A}\left(1-\Sigma_{\mathrm{B}} x_{\mathrm{B}}\right)}$$

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。