如果你也在 怎样代写广义线性模型Generalized linear model MAT22006这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。广义线性模型Generalized linear model由John Nelder和Robert Wedderburn提出的,作为统一其他各种统计模型的一种方式,包括线性回归、逻辑回归和泊松回归。
广义线性模型Generalized linear model涵盖了所有这些情况,它允许响应变量具有任意的分布(而不是简单的正态分布),允许响应变量的任意函数(链接函数)随预测因子线性变化(而不是假设响应本身必须线性变化)。例如,上述预测海滩出席者人数的情况通常用泊松分布和对数联系来建模,而预测海滩出席概率的情况通常用伯努利分布(或二项分布,取决于问题的确切表述方式)和对数(或对数)联系函数来建模。
avatest.org™广义线性模型Generalized linear model代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。avatest.org™, 最高质量的广义线性模型Generalized linear model作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此广义线性模型Generalized linear model作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。
想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。
avatest.org™ 为您的留学生涯保驾护航 在网课代修方面已经树立了自己的口碑, 保证靠谱, 高质且原创的网课代考服务。我们的专家在广义线性模型Generalized linear model代写方面经验极为丰富,各种广义线性模型Generalized linear model相关的作业也就用不着 说。
我们提供的广义线性模型Generalized linear model及其相关学科的代写,服务范围广, 其中包括但不限于:
统计代写|广义线性模型代考GENERALIZED LINEAR MODEL代考|Preliminary comments
The linear model $\eta=\beta_{0}+\beta_{1} x+\beta_{2} x_{2}=\boldsymbol{f}^{\top}(\boldsymbol{x}) \boldsymbol{\beta}$ may be transformed to the canonical form $\eta=z_{1}+z_{2}$ by defining $z_{1}=\beta_{0}+\beta_{1} x_{1}$ and $z_{2}=\beta_{2} x_{2}$. This is equivalent to
$$
\left[\begin{array}{c}
1 \
z_{1} \
z_{2}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \
\beta_{0} & \beta_{1} & 0 \
0 & 0 & \beta_{2}
\end{array}\right]\left[\begin{array}{c}
1 \
x_{1} \
x_{2}
\end{array}\right]
$$
or
$$
\boldsymbol{f}(\boldsymbol{z})=\boldsymbol{B} \boldsymbol{f}(\boldsymbol{x})
$$
While globally D-optimal designs were successfully found in Section $4.4$ using the canonical form of the linear predictor, this cannot be achieved for the case of two or more explanatory variables. Although no constraints were placed on the value of $z$ in Section $4.4$ for the logit link, a constraint effectively occurred through the model weight $\omega=\pi(1-\pi)$ becoming very small as $\pi$ became close to 0 or 1 . Similarly, constraints occurred through the behaviour of the model weights for the probit and complementary log-log links. However, in the $\left(z_{1}, z_{2}\right)$ plane considered in this section, the entire length of the line $\eta=z_{1}+z_{2}=0$ gives $\pi=0.5$ for the logit and probit links, and $\pi=1-\exp (-1)=0.6321$ for the complementary log-log link (from (4.2), (4.4) and (4.6), respectively). The model weight is constant along the entire line, so no constraining occurs.
There is nothing “special” about the line $z_{1}+z_{2}=0$. For a given value of $c$, the model weight $\omega(\boldsymbol{z})$ takes a constant value along the line $\eta=z_{1}+z_{2}=c$. So in order to restrict the values of the explanatory variables $x_{1}$ and $x_{2}$ to “reasonable” values, constraints must be placed on them.
It has become standard to investigate locally optimal designs for values of $x_{1}$ and $x_{2}$ in the region $\mathcal{X}=\left{\left(x_{1}, x_{2}\right):-1 \leq x_{1} \leq 1,-1 \leq x_{2} \leq 1\right}$. This is not really restrictive. If an explanatory variable, $w$, lies between $a$ and $b(>a)$, the transformation
$$
x=\frac{2 w-(a+b)}{b-a}
$$
gives an explanatory variable $x$ that lies between $-1$ and 1 . Rewriting the linear predictor $\eta$ in terms of variables $x_{i}$ instead of variables $w_{i}$ necessitates a change to the parameter vector $\boldsymbol{\beta}$. Once the optimal design has been determined in terms of $x$, transform back to $w$ using
$$
w=\frac{1}{2}[(a+b)+(b-a) x]
$$
This is illustrated in Example $4.5 .5$.
统计代写|广义线性模型代考GENERALIZED LINEAR MODEL代考|The logit link
Consider a situation where one seeks a locally D-optimal design on the region $\mathcal{X}=\left{\left(x_{1}, x_{2}\right):-1 \leq x_{1} \leq 1,-1 \leq x_{2} \leq 1\right}$ using the logit link and the
THE MODEL $\eta=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}$ parameter vector $\boldsymbol{\beta}=(1,1,1)^{\top}$. Remember that this is the assumed parameter vector. One purpose of using the design is to estimate the actual value of $\boldsymbol{\beta}$.
The method is a straightforward extension of that demonstrated earlier in Sub-section 4.4.1. Note first that there are now $p=3$ parameters, so that the required number of support points, $s$, will lie between $p=3$ and $p(p+1) / 2=6$. The values of $x_{1}$ and $x_{2}$ are constrained to lie between $-1$ and 1 , and the design weights must satisfy $0<\delta_{i}<1(i=1, \ldots, s)$ and $\delta_{1}+\cdots+\delta_{s}=1$. If constrOptim is used, these constraints must be written in the form $\boldsymbol{C v}-\boldsymbol{u} \geq \mathbf{0}$; see page 34 . Note here that there are two constraints on each of the $s$ values of $x_{1}$, two constraints on each of the $s$ values of $x_{2}$, two constraints on each of the $s$ individual values of $\delta_{i}$, and then one remaining constraint $\delta_{1}+\cdots+\delta_{s}=1$; i.e., a total of $6 s+1$ constraints. Denote by $x_{i j}$ the value of $x_{j}$ at the $i$ th support point $(i=1, \ldots, s ; j=1,2)$.
Let $\boldsymbol{x}{1}=\left(x{11}, x_{21}, \ldots, x_{s 1}\right)^{\top}, \boldsymbol{x}{2}=\left(x{12}, x_{22}, \ldots, x_{s 2}\right)^{\top}$ and $\boldsymbol{\delta}=\left(\delta_{1}, \ldots, \delta_{s}\right)^{\top}$. Then the constraints are written as
广义线性模型代写
统计代写|广义线性模型代考 GENERALIZED LINEAR MODEL代 考|Preliminary comments
线性模型 $\eta=\beta_{0}+\beta_{1} x+\beta_{2} x_{2}=\boldsymbol{f}^{\top}(\boldsymbol{x}) \boldsymbol{\beta}$ 可以转换为规范形式 $\eta=z_{1}+z_{2}$ 通过定义 $z_{1}=\beta_{0}+\beta_{1} x_{1}$ 和 $z_{2}=\beta_{2} x_{2}$. 这相当于
或者
$$
\boldsymbol{f}(\boldsymbol{z})=\boldsymbol{B} \boldsymbol{f}(\boldsymbol{x})
$$
而全局 D 最优设计在第 4 4使用线性预测器的规范形式,这对于两个或多个解释变量的情 况是无法实现的。虽然没有限制价值 $z$ 在部分 4 .4对于 logit 链接,通过模型权重有效地发 生了约束 $\omega=\pi(1-\pi)$ 变得非常小 $\pi$ 变得接近 0 或 1 。类似地,约束是通过概率和互补对 数链接的模型权重的行为发生的。然而,在 $\left(z_{1}, z_{2}\right)$ 在本节中考虑的平面,线的整个长度 $\eta=z_{1}+z_{2}=0$ 给 $\pi=0.5$ 对于 logit 和 probit 链接,以及 $\pi=1-\exp (-1)=0.6321$ 对 于互补的日志-日志链接(分别来自 (4.2)、(4.4) 和 (4.6))。模型权重沿整条线保持不 变,因此不会发生约束。
䢒条线没有什么“特别”的地方 $z_{1}+z_{2}=0$. 对于给定的值 $c$, 模型权重 $\omega(\boldsymbol{z})$ 沿线取一个常数 值 $\eta=z_{1}+z_{2}=c$. 所以为了限制解释变量的值 $x_{1}$ 和 $x_{2}$ 为了 “合理”的价值观,必须对其施 加约束。
研究局部最优设计的值已成为标准 $x_{1}$ 和 $x_{2}$ 在该区域
\left 的分隔符缺失或无法识别
. 这并不是真正的限制。如果是解释变
量, $w$, 介于 $a$ 和 $b(>a)$, 变换
$$
x=\frac{2 w-(a+b)}{b-a}
$$
给出一个解释变量 $x$ 介于 $-1$ 和 1 。重写线性预测器 $\eta$ 在变量方面 $x_{i}$ 而不是变量 $w_{i}$ 需要更改 参数向量 $\beta$. 一旦根据以下方面确定了最佳设计 $x$, 转换回 $w$ 使用
$$
w=\frac{1}{2}[(a+b)+(b-a) x]
$$
这在示例中进行了说明4.5.5.
统计代写|广义线性模型代考 GENERALIZED LINEAR MODEL代 考|The logit link
考虑一种情况,在该区域上寻求局部 $\mathrm{D}$ 最优设计
\left 的分隔符缺失或无法识别 使用 logit 链接和
THE MODEL $\eta=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}$ 参数向量 $\boldsymbol{\beta}=(1,1,1)^{\top}$. 请记住,这是假定的参数向 量。使用该设计的目的之一是估计实际值 $\boldsymbol{\beta}$.
该方法是前面 $4.4 .1$ 小节中演示的方法的直接扩展。首先注意现在有 $p=3$ 参数,以便所 需的支持点数, $s$, 将介于 $p=3$ 和 $p(p+1) / 2=6$. 的价值观 $x_{1}$ 和 $x_{2}$ 被限制在 $-1$ 和 1 ,设 计权重必须满足 $0<\delta_{i}<1(i=1, \ldots, s)$ 和 $\delta_{1}+\cdots+\delta_{s}=1$. 如果使用了 constrOptim, 这些约束必须写成形式 $\boldsymbol{C v}-\boldsymbol{u} \geq \mathbf{0}$; 见第 34 页。需要注意的是,每一个都有两个约束 $s$ 的值 $x_{1}$, 每个有两个约束 $s$ 的值 $x_{2}$, 每个有两个约束 $s$ 个人价值观 $\delta_{i}$ ,然后是一个剩余的约束 $\delta_{1}+\cdots+\delta_{s}=1$; 即,总共 $6 s+1$ 约束。表示为 $x_{i j}$ 的价值 $x_{j}$ 在 $i$ 支撑点 $(i=1, \ldots, s ; j=1,2)$.
让 $\boldsymbol{x} 1=\left(x 11, x_{21}, \ldots, x_{s 1}\right)^{\top}, \boldsymbol{x} 2=\left(x 12, x_{22}, \ldots, x_{s 2}\right)^{\top}$ 和 $\boldsymbol{\delta}=\left(\delta_{1}, \ldots, \delta_{s}\right)^{\top}$. 然后约束写 为
统计代写|广义线性模型代考Generalized linear model代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。
微观经济学代写
微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。
线性代数代写
线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。
博弈论代写
现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。
微积分代写
微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。
它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。
计量经济学代写
什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。
根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。
MATLAB代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。