Posted on Categories:abstract algebra, 抽象代数, 数学代写

数学代写|抽象代数代写Abstract Algebra代考|MATH3303 Uniqueness of the Unity and Inverses

avatest™

avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试，包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您，创造模拟试题，提供所有的问题例子，以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试，我们都能帮助您！

•最快12小时交付

•200+ 英语母语导师

•70分以下全额退款

数学代写|抽象代数代写Abstract Algebra代考|Uniqueness of the Unity and Inverses

If a ring has a unity, it is unique. If a ring element has a multiplicative inverse, it is unique.
Many students have the mistaken tendency to treat a ring as if it were a group under multiplication. It is not. The two most common errors are the assumptions that ring elements have multiplicative inverses – they need not-and that a ring has a multiplicative identity-it need not. For example, if $a, b$, and $c$ belong to a ring, $a \neq 0$ and $a b=a c$, we cannot conclude that $b=c$.Similarly, if $a^{2}=a$, we cannot conclude that $a=0$ or 1 (as is the case with real numbers). In the first place, the ring need not have multiplicative cancellation, and in the second place, the ring need not have a multiplicative identity. There is an important class of rings that contains $Z$ and $Z x]$ wherein multiplicative identities exist and for which multiplicative cancellation holds. This class is taken up in the next chapter.

数学代写|抽象代数代写Abstract Algebra代考|Subring Test

$A$ nonempty subset $S$ of a ring $R$ is a subring if $S$ is closed under subtraction and multiplication – that is, if $a-b$ and $a b$ are in $S$ whenever $a$ and $b$ are in $S$.
PROOF Since addition in $R$ is commutative and $S$ is closed under subtraction, we know by the One-Step Subgroup Test (Theorem 3.1) that $S$ is an Abelian group under addition. Also, since multiplication in $R$ is associative as well as distributive over addition, the same is true for multiplication in $S$. Thus, the only condition remaining to be checked is that multiplication is a binary operation on $S$. But this is exactly what closure means.

We leave it to the student to confirm that each of the following examples is a subring.

I EXAMPLE $8{0}$ and $R$ are subrings of any ring $R$. ${0}$ is called the trivial subring of $R$.

IEXAMPLE $9{0,2,4}$ is a subring of the ring $Z_{6}$, the integers modulo 6. Note that although 1 is the unity in $Z_{6}, 4$ is the unity in { $0,2,4}$.
I EXAMPLE 10 For each positive integer $n$, the set
$$n Z={0, \pm n, \pm 2 n, \pm 3 n, \ldots}$$

数学代写|由象代数代写Abstract Algebra代考|Subring Test

$A$ 非空子集 $S$ 个个戒指 $R$ 如果是子环 $S$ 在减㹤和乘法下是闭合的一一也就是说，如果 $a-b$ 和 $a b$ 在 $S$ 每当 $a$ 和 $b$ 在 $S$.

| 例 10 对于每个正整数 $n$, 集合
$$n Z=0, \pm n, \pm 2 n, \pm 3 n, \ldots$$

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。