Posted on Categories:Combinatorics, 数学代写, 组合学

数学代写|组合学代写Combinatorics代考|CS-E4555 Burnside’s Lemma

如果你也在 怎样代写组合学Combinatorics CS-E4555这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。组合学Combinatorics是数学的一个领域,主要涉及计数(作为获得结果的手段和目的)以及有限结构的某些属性。主要涉及计数,作为获得结果的手段和目的,以及有限结构的某些属性。它与数学的许多其他领域密切相关,有许多应用,从逻辑学到统计物理学,从进化生物学到计算机科学。

组合学Combinatorics因其解决的问题的广泛性而闻名。组合问题出现在纯数学的许多领域,特别是在代数、概率论、拓扑学和几何学中,以及在其许多应用领域。许多组合问题在历史上被孤立地考虑,对某个数学背景下出现的问题给出一个临时性的解决方案。然而,在二十世纪后期,强大而普遍的理论方法被开发出来,使组合学本身成为一个独立的数学分支。组合学最古老和最容易理解的部分之一是图论,它本身与其他领域有许多自然联系。在计算机科学中,组合学经常被用来获得算法分析中的公式和估计。

组合学Combinatorics代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。 最高质量的组合学Combinatorics作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此组合学Combinatorics作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试,包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您,创造模拟试题,提供所有的问题例子,以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试,我们都能帮助您!

在不断发展的过程中,avatest™如今已经成长为论文代写,留学生作业代写服务行业的翘楚和国际领先的教育集团。全体成员以诚信为圆心,以专业为半径,以贴心的服务时刻陪伴着您, 用专业的力量帮助国外学子取得学业上的成功。

•最快12小时交付 

•200+ 英语母语导师 

•70分以下全额退款

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

我们在数学Mathematics代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在组合学Combinatorics代写方面经验极为丰富,各种组合学Combinatorics相关的作业也就用不着 说。

数学代写|组合学代写Combinatorics代考|CS-E4555 Burnside’s Lemma

数学代写|组合学代写Combinatorics代考|Burnside’s Lemma

The simple problem of coloring fields of a square $2 \times 2$ using three colors is considered in Example 2.7.11, and the number of nonequivalent colorings is determined by direct counting. At the beginning of this section we shall formulate two more similar problems.

Example 7.1.1. Coloring the vertices of a cube using blue, yellow, and red colors can be done in $3^{8}=6561$ ways. Obviously, we are considering here the case when not all three colors are necessarily used. Two colorings are equivalent (or geometrically equal) if there is a rotation $\mathcal{R}$ of the cube such that the image $\mathcal{R}(v)$ of any vertex $v$ is of the same color as the vertex itself. Let us consider some classes of colorings.

Class $\mathcal{A}$ consists of colorings such that 4 vertices that belong to the same side of the cube are red, and the remaining 4 vertices are blue. All colorings from class $\mathcal{A}$ are obviously equivalent. Class $\mathcal{B}$ consists of colorings such that three vertices are blue, and the remaining 5 vertices are red. Class $\mathcal{C}$ consists of colorings such that each of the three colors is assigned to at least one vertex.

数学代写|组合学代写Combinatorics代考|On Permutations

In this section we shall introduce some important notions related to permutations of the set $\mathbb{N}{n}={1,2, \ldots, n}$. We start with the notions of inversion and the parity (oddness and evenness) of a permutation. An arbitrary permutation of set $\mathbb{N}{n}$ will be denoted by $a_{1} a_{2}, \ldots a_{n}$.

Inversion. Consider elements $i, j \in \mathbb{N}{n}$. We say that the pair $(i, j)$ is an inversion of a permutation $a{1} a_{2} \ldots a_{n}$ if $ia_{j}$. For example, let us consider the permutation 3142 of the set ${1,2,3,4}$. All the inversions of this permutation are $(3,1),(3,2)$, and $(4,2)$.

Parity of a permutation. A permutation $a_{1} a_{2} \ldots a_{n}$ is odd if the number of all its inversions is odd. A permutation $a_{1} a_{2} \ldots a_{n}$ is even if the number of all its inversions is even.

Theorem 7.2.1. Consider a permutation $a_{1} a_{2} \ldots a_{n}$. If two elements $a_{i}$ and $a_{j}$ exchange positions, then the permutation changes parity.

Proof. Suppose there are exactly $k$ elements between $a$ and $b$ in the permutation $a_{1} a_{2} \ldots a_{n}$, where $a, b \in\left{a_{1}, a_{2}, \ldots, a_{n}\right}$. This permutation has the following form
$$
a_{1} a_{2} \ldots a c_{1} c_{2} \ldots c_{k} b \ldots a_{n} .
$$
Elements $a$ and $b$ can exchange positions the following way. First, element $a$ exchanges positions with elements $c_{1}, c_{2}, \ldots, c_{k}$ and $b$, one after the other, and then element $b$ exchanges positions with elements $c_{k}, c_{k-1}, \ldots, c_{1}$, one after the other. This way, exactly $2 k+1$ exchanges of the positions of neighboring elements were made. Note that every exchange of the positions of neighboring elements changes the parity of the permutation. Consequently, after $2 k+1$ steps, the obtained permutation is not of the same parity as the starting one, and the proof is completed.

数学代写|组合学代写Combinatorics代考|CS-E4555 Burnside’s Lemma

组合学代写

数学代写|组合学代写Combinatorics代考|Burnside’s Lemma


正方形区域着色的简单问题 $2 \times 2$ 例 2.7.11 考虑了使用三种颜色,不等价着色的数量通过直接计数确定。在本节的开头,我们将提 出另外两个粂似的问题。
例 7.1.1。可以使用蓝色、黄色和红色为立方体的顶点暑色 $3^{8}=6561$ 方法。显然,我们在这里考虑的是不必使用所有三种颜色的 情况。如果有旋转,两种颜色是等价的(或几何上相等的) $\mathcal{R}$ 多维数据集使得图像 $\mathcal{R}(v)$ 任意顶点 $v$ 与顶点本身的颜色相同。让我 们考虑一些颜色类别。
班级 $\mathcal{A}$ 由着色组成,使得属于立方体同一伅的 4 个顶点为红色,其余 4 个顶点为蓝色。课堂上的所有颜色 $\mathcal{A}$ 显然是等价的。班级 $\mathcal{B}$ 由着色组成,其中三个顶点为蓝色,其余 5 个顶点为红色。班级 $\mathcal{C}$ 由着色組成,使得三种颜色中的每一种都分配给至少一个顶 点。


数学代写|组合学代写Combinatorics代考 $\mid$ On Permutations


在本节中,我们将介绍一些与隹合排列相关的重要概念 $\mathrm{N} n=1,2, \ldots, n$. 我们从反转和排列的奇偶性 (奇数和均匀性) 的概念
开始。集合的任意排列 $\mathbb{N} n$ 将表示为 $a_{1} a_{2}, \ldots a_{n}$.
倒置。考虞元拜 $i, j \in \mathbb{N} n$. 我们说这对 $(i, j)$ 是排列的反转 $a 1 a_{2} \ldots a_{n}$ 如果 $i a_{j}$. 例如,让我们考虑集合的排列 $31421,2,3,4$. 这 个排列的所有反转都是 $(3,1),(3,2)$ ,和 $(4,2)$.
排列的奇偶性。一个排列 $a_{1} a_{2} \ldots a_{n}$ 如果它的所有反转数都是奇数,则它是奇数。一个排列 $a_{1} a_{2} \ldots a_{n}$ 是偶数,即使它的所有反 转数都是偶数。
定理 7.2.1。考虑一个排列 $a_{1} a_{2} \ldots a_{n}$. 如果两个元表 $a_{i}$ 和 $a_{j}$ 交换位置,然后排列改妾平价。
证明。假设恰好有 $k$ 之间的元綘 $a$ 和 $b$ 在排列中 $a_{1} a_{2} \ldots a_{n}$ ,在哪里 \left 的分隔符缺失或无法识别
这种排列
具有以下形式
$$
a_{1} a_{2} \ldots a c_{1} c_{2} \ldots c_{k} b \ldots a_{n}
$$
元表 $a$ 和 $b$ 可以通过以下方式交换位置。一、元表 $a$ 与元责交换位置 $c_{1}, c_{2}, \ldots, c_{k}$ 和 $b ,$ 个接一个,然后是元责 $b$ 与元表交换位置 排列的奇偶性。因此,之后 $2 k+1$ 步饻,得到的排列与起始排列的奇偶性不同,证明完成。

数学代写|组合学代写Combinatorics代考

数学代写|组合学代写Combinatorics代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Write a Reply or Comment

您的电子邮箱地址不会被公开。 必填项已用 * 标注