Posted on Categories:金融代写, 金融数学, 随机分析

金融代写|随机分析代写STOCHASTIC ANALYSIS代考|STATS217 Numerical results

如果你也在 怎样代写随机分析stochastic analysis STATS217这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。随机分析stochastic analysis或随机过程可以被定义为由一些数学集合索引的随机变量的集合,这意味着随机过程的每个随机变量都与该集合中的一个元素唯一相关。历史上,索引集是实线的某个子集,如自然数,从而使索引集有了时间的解释。集合中的每个随机变量都从同一数学空间取值,称为状态空间。

随机分析stochastic analysis在概率论和相关领域,随机(/stoʊˈkæstɪk/)或随机过程是一个数学对象,通常被定义为一个随机变量系列。随机过程被广泛用作系统和现象的数学模型,这些系统和现象似乎以随机的方式变化。这方面的例子包括细菌种群的生长,由于热噪声而波动的电流,或气体分子的运动。 随机过程在许多学科中都有应用,如生物学、化学、生态学、神经科学、物理学、 图像处理、信号处理、控制理论、信息理论、计算机科学、密码学和电信。此外,金融市场中看似随机的变化也促使随机过程在金融中得到广泛使用。

随机分析stochastic analysis代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。最高质量的随机分析stochastic analysis作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于统计Statistics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此随机分析stochastic analysis作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试,包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您,创造模拟试题,提供所有的问题例子,以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试,我们都能帮助您!

在不断发展的过程中,avatest™如今已经成长为论文代写,留学生作业代写服务行业的翘楚和国际领先的教育集团。全体成员以诚信为圆心,以专业为半径,以贴心的服务时刻陪伴着您, 用专业的力量帮助国外学子取得学业上的成功。

•最快12小时交付 

•200+ 英语母语导师 

•70分以下全额退款

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

我们在金融 Finaunce代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的金融 Finaunce代写服务。我们的专家在随机分析stochastic analysis代写方面经验极为丰富,各种随机分析stochastic analysis相关的作业也就用不着 说。

金融代写|随机分析代写STOCHASTIC ANALYSIS代考|STATS217 Numerical results

金融代写|随机分析代写STOCHASTIC ANALYSIS代考|Numerical results

In this section, we explain the setup of the simulation and exhibit the main results. We have used Tensorflow 2 and deep learning techniques for Python developped in [10]. We consider $d=3$ risky assets and a riskless asset whose return is assumed to be 0, on a 1-year investment horizon for the sake of simplicity. We consider 24 portfolio rebalancing during the 1-year period, i.e., one every two weeks. This means that we have $N=24$ steps in the training of our neural networks. The parameters used in the simulation are detailed in Table $2 .$

First, we show the numerical results for the learning and the non-learning strategies by presenting a performance and an allocation analysis in Subsection 5.3.1. Then, we add the admissible constrained EW to the two previous ones and use this neutral strategy as a benchmark in Subsection 5.3.2. Ultimately, in Subsection 5.3.3, we illustrate numerically the convergence of the non-learning strategy to the constrained Merton problem when the loss aversion parameter $q$ vanishes.

金融代写|随机分析代写STOCHASTIC ANALYSIS代考|Learning and non-learning strategies

We simulate $\tilde{N}=1000$ trajectories for each strategy and exhibit the performance results with an initial wealth $x_{0}=1$. Figures 3 illustrates the average historical level of the learning and non-learning strategies with a $95 \%$ confidence interval. Learning outperforms significantly Non-Learning with a narrower confidence interval revealing that less uncertainty surrounds Learning performance, thus yielding less risk.

An interesting phenomenon, visible in Fig. 3, is the nearly flat curve for Learning between time 0 and time 1. Indeed, whereas Non-Learning starts investing immediately, Learning adopts a safer approach and needs a first time step before allocating a significant proportion of wealth. Given the level of uncertainty surrounding $b_{0}$, this first step allows Learning to fine-tune its allocation by updating the prior belief with the first return available at time 1. On the contrary, Non-Learning, which cannot update its prior, starts investing at time 0 .

Fig. 4 shows the ratio of Learning over Non-Learning. A ratio greater than one means that Learning outperforms Non-Learning and underperforms when less than one. It shows the significant outperformance of Learning over Non-Learning except during the first period where Learning was not significantly invested and NonLearning had a positive return. Moreover, this graph reveals the typical increasing concave curve of the value of information described in [17], in the context of investment decisions and costs of data analytics, and in [6] in the resolution of the Markowitz portfolio selection problem using a Bayesian learning approach.

金融代写|随机分析代写STOCHASTIC ANALYSIS代考|STATS217 Numerical results

随机分析代写

金融代写|随机分析代写STOCHASTIC ANALYSIS代考|Numerical results

在本节中,我们将解释模拟的设置并展示主要结果。我们使用了 Tensorflow 2 和在 [10] 中开发的 Python 深度学习技术。我们认为d=3为简单起见,在 1 年的投资期限内假设回报为 0 的风险资产和无风险资产。我们考虑在 1 年期间进行 24 次投资组合再平衡,即每两周一次。这意味着我们有ñ=24训练我们的神经网络的步骤。仿真中使用的参数详见表2.

首先,我们通过在 5.3.1 小节中展示性能和分配分析来展示学习和非学习策略的数值结果。然后,我们将可接受的约束 EW 添加到前两个 EW 中,并在 5.3.2 小节中使用这种中性策略作为基准。最后,在 5.3.3 小节中,我们用数值说明了当损失厌恶参数时非学习策略对约束 Merton 问题的收敛性q消失。

金融代写|随机分析代写STOCHASTIC ANALYSIS代考|Learning and non-learning strategies

我们模拟ñ~=1000每个策略的轨迹,并以初始财富展示性能结果X0=1. 图 3 说明了学习和非学习策略的平均历史水平95%置信区间。学习显着优于非学习,置信区间更窄,表明学习绩效的不确定性更少,从而产生的风险更小。

在图 3 中可以看到一个有趣的现象,即学习在时间 0 和时间 1 之间几乎是平坦的曲线。事实上,虽然非学习会立即开始投资,但学习会采用更安全的方法,并且在分配很大一部分之前需要第一步的财富。鉴于周围的不确定性程度b0,这第一步允许学习通过使用时间 1 可用的第一个回报更新先验信念来微调其分配。相反,无法更新其先验的非学习在时间 0 开始投资。

图 4 显示了学习与非学习的比率。比率大于 1 意味着学习优于非学习,小于 1 时表现不佳。它显示了学习优于非学习的显着优于非学习的第一阶段,学习没有显着投资并且非学习有正回报。此外,该图揭示了 [17] 中描述的信息价值的典型递增凹曲线,在投资决策和数据分析成本的背景下,以及在 [6] 中使用贝叶斯解决马科维茨投资组合选择问题学习方法。

金融代写|随机分析代写Stochastic Analysis代考

金融代写|随机分析代写Stochastic Analysis代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Write a Reply or Comment

您的电子邮箱地址不会被公开。 必填项已用 * 标注