Posted on Categories:Theory of International Trade, 国际贸易理论, 金融代写

金融代写|国际贸易理论代写Theory of International Trade代考|ECON3HH3 GDP maximization

如果你也在 怎样代写国际贸易理论Theory of International Trade ECON3HH3这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。国际贸易理论Theory of International Trade是经济学的一个子领域,它分析国际贸易的模式,它的起源,以及它的福利影响。自18世纪以来,国际贸易政策一直存在很大争议。国际贸易理论和经济学本身已经发展为评估贸易政策效果的手段。

国际贸易理论Theory of International Trade只是解释国际贸易的不同理论。贸易是两个人或实体之间交换货物和服务的概念。国际贸易则是两个不同国家的人或实体之间的这种交流的概念。人们或实体进行贸易是因为他们相信他们能从交换中受益。他们可能需要或想要这些货物或服务。虽然从表面上看,这许多听起来非常简单,但有大量的理论、政策和商业战略构成了国际贸易。

国际贸易理论Theory of International Trade代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。最高质量的国际贸易理论Theory of International Trade作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此国际贸易理论Theory of International Trade作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试,包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您,创造模拟试题,提供所有的问题例子,以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试,我们都能帮助您!

在不断发展的过程中,avatest™如今已经成长为论文代写,留学生作业代写服务行业的翘楚和国际领先的教育集团。全体成员以诚信为圆心,以专业为半径,以贴心的服务时刻陪伴着您, 用专业的力量帮助国外学子取得学业上的成功。

•最快12小时交付 

•200+ 英语母语导师 

•70分以下全额退款

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

我们在金融 Finaunce代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的金融 Finaunce代写服务。我们的专家在国际贸易理论Theory of International Trade代写方面经验极为丰富,各种国际贸易理论Theory of International Trade相关的作业也就用不着说。

金融代写|国际贸易理论代写Theory of International Trade代考|ECON3HH3 GDP maximization

金融代写|国际贸易理论代写Theory of International Trade代考|GDP maximization

Expenditure minimization: Looking at the behavior of a household from a different angle, let us consider the following problem in which the household minimizes the expenditure on the purchase of a consumption vector that guarantees a specified utility level: given $p$ and $u$,

GDP maximization: Given a price vector $p$ and a production vector $y$, we can calculate the value of the total production $p y \equiv \sum_{j=1}^n p_j y_j$, which is nothing but the Gross Domestic Product (GDP) of the country. Let us consider the GDP maximization problem under the resource constraint:
$$
\max _y p y \text { subject to } y \in \mathscr{Y}(\bar{v}) \text {. }
$$
We can show that the production point $\tilde{y}(p, \bar{v})$ of the production equilibrium for $p$ coincides with the solution to the GDP maximization problem. It suffices to show that the production equilibrium satisfies the conditions for the GDP maximization.

Taking account of the definition of $\mathscr{Y}(\bar{v})$, let us define the Lagrangian function for (1.15):
$$
\mathscr{L} \equiv \sum_{j=1}^n p_j y_j+\sum_{j=1}^n \mu_j\left{F_j\left(v_{\bullet j}\right)-y_j\right}+\sum_{i=1}^m \xi_i\left{\bar{v}i-\sum{j=1}^n v_{i j}\right},
$$
where $\mu_j(j=1,2, \ldots, n)$ and $\xi_i(i=1,2, \ldots, m)$ are the Lagrange multipliers. The first-order necessary conditions for the GDP maximization become as follows: for $i=1,2, \ldots, m$ and $j=1,2, \ldots, n$,
$$
\begin{aligned}
&\frac{\partial \mathscr{L}}{\partial y_j}=p_j-\mu_j=0 \
&\frac{\partial \mathscr{L}}{\partial \mu_j}=F_j\left(v_{\bullet j}\right)-y_j=0 \
&\frac{\partial \mathscr{L}}{\partial v_{i j}}=\mu_j \frac{\partial F_j\left(v_{\bullet j}\right)}{\partial v_{i j}}-\xi_i=0 \
&\frac{\partial \mathscr{L}}{\partial \xi_i}=\bar{v}i-\sum{k=1}^n v_{i k}=0
\end{aligned}
$$

金融代写|国际贸易理论代写Theory of International Trade代考|GDP function

GDP function: The maximized GDP is written as a function of $p$ and $\bar{v}$ :
$$
Y(p, \bar{v}) \equiv p \tilde{y}(p, \bar{v}) \equiv \max {p y \mid y \in \mathscr{Y}(\bar{v})} .
$$
We call it the GDP function. ${ }^{18}$ The GDP function is a convenient analytical tool that describes intensively the behavior of the production sector of a country as a whole. We show some of the properties of the GDP function below.

The GDP function is linearly homogeneous, non-decreasing, and convex in $p$. The linear homogeneity of $Y$ in $p$ directly follows from the definition. To show $Y$ is non-decreasing in $p$, let us take two price vectors $p$ and $p^{\prime}$ such that $p_j0$ and $\tilde{y}_j(p, \bar{v}) \geq 0$, the second term is also non-negative, implying $Y$ is non-decreasing in $p$. Let us turn to the convexity in $p$. For arbitrary price vectors $p$ and $p^{\prime}$ and a real number $\lambda$ such that $0<\lambda<1$, define $p^\lambda \equiv \lambda p+[1-\lambda] p^{\prime}$. Then, by definition, we have $Y(p, \bar{v}) \geq p \tilde{y}\left(p^\lambda, \bar{v}\right)$ and $Y\left(p^{\prime}, \bar{v}\right) \geq p^{\prime} \tilde{y}\left(p^\lambda, \bar{v}\right)$. Multiplying the former by $\lambda$ and the latter by $[1-\lambda]$ and adding both sides, we obtain $\lambda Y(p, \bar{v})+[1-\lambda] Y\left(p^{\prime}, \bar{v}\right) \geq\left(\lambda p+[1-\lambda] p^{\prime}\right) \tilde{y}\left(p^\lambda, \bar{v}\right)=Y\left(p^\lambda, \bar{v}\right)$.

金融代写|国际贸易理论代写Theory of International Trade代考|ECON3HH3 GDP maximization

国际贸易理论代写

金融代写|国际贸易理论代写Theory of International Trade代考| GDP maximization


支出最小化: 从不同的角度看待家庭的行为,让我们考虑以下问题,其中家庭最小化购买消费向量的支出,以保证特定的效用水 平: $p$ 和 $u$,

GDP最大化: 给定价格向量 $p$ 和生产向量 $y$ ,我们可以计算出总产量的价值 $p y \equiv \sum_{j=1}^n p_j y_j$ ,这只不过是该国的国内生产总值 (GDP)。让我们考虑一下资源约束下的GDP最大化问题:
$\max y p y$ subject to $y \in \mathscr{Y}(\bar{v})$. 我们可以证明生产点 $\bar{y}(p, \bar{v})$ 的生产均衡 $p$ 这与GDP最大化问题的解决方㝔相吻合。只要证明生产均衡满足GDP最大化的条件就足 够了。 考虑到 $\mathscr{Y}(\bar{v})$ ,让我们定义 (1.15) 的拉格朗日函数: 缺少或无法识别 \left 的分隔符 哪里 $\mu_j(j=1,2, \ldots, n)$ 和 $\xi_i(i=1,2, \ldots, m)$ 是拉格朗日乘数。GDP最大化的一阶必要条件如下: $i=1,2, \ldots, m$ 和 $j=1,2, \ldots, n$, $\frac{\partial \mathscr{L}}{\partial y_j}=p_j-\mu_j=0 \quad \frac{\partial \mathscr{L}}{\partial \mu_j}=F_j\left(v{\bullet j}\right)-y_j=0 \frac{\partial \mathscr{L}}{\partial v_{i j}}=\mu_j \frac{\partial F_j\left(v_{\bullet j}\right)}{\partial v_{i j}}-\xi_i=0 \quad \frac{\partial \mathscr{L}}{\partial \xi_i}=\bar{v} i-\sum k=1^n v_{i k}=0$


金融代写|国际贸易理论代写Theory of International Trade代考| GDP function


GDP函数:最大化的GDP写为 $p$ 和 $\bar{v}$ :
$$
Y(p, \bar{v}) \equiv p \bar{y}(p, \bar{v}) \equiv \max p y \mid y \in \mathscr{Y}(\bar{v})
$$
我们称之为GDP函数。 ${ }^{18} G D P$ 函数是一种方便的分析工具,可以深入描述整个国家生产部门的行为。我们在下面显示了GDP函数 的一些属性。

GDP 函数是线性㐎次的,不递减的,并且在 $p$ 线性均匀性 $Y$ 在 $p$ 直接䕊循定义。要显示 $Y$ 在 $p$ ,让伐们取两个价格向量 $p$ 和 $p^{\prime}$ 使得 $p_j 0$ 和 $\bar{y}_j(p, \bar{v}) \geq 0$ ,第二项也是非否定的,暗示 $Y$ 在 $p$. 让我们转向凸性 $p$.对于任意价格向量 $p$ 和 $p^{\prime}$ 和一个实数 $\lambda$ 使得 $0<\lambda<1$ 定义 $p^\lambda \equiv \lambda p+[1-\lambda] p^{\prime}$. 然后,根据定义,我们有 $Y(p, \bar{v}) \geq p \bar{y}\left(p^\lambda, \bar{v}\right)$ 和 $Y\left(p^{\prime}, \bar{v}\right) \geq p^{\prime} \bar{y}\left(p^\lambda, \bar{v}\right)$.侍前者乘以入后者由 $[1-\lambda]$ 并将两边相加,我们得到 $\lambda Y(p, \bar{v})+[1-\lambda] Y\left(p^{\prime}, \bar{v}\right) \geq\left(\lambda p+[1-\lambda] p^{\prime}\right) \bar{y}\left(p^\lambda, \bar{v}\right)=Y\left(p^\lambda, \bar{v}\right)$.

金融代写|国际贸易理论代写Theory of International Trade代考

金融代写|国际贸易理论代写Theory of International Trade代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Write a Reply or Comment

您的电子邮箱地址不会被公开。 必填项已用 * 标注