Posted on Categories:Discrete Mathematics, 数学代写, 离散数学

数学代写|离散数学代写Discrete Mathematics代考|MATH215 Planar Graphs

如果你也在 怎样代写离散数学Discrete Mathematics MATH215这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。离散数学Discrete Mathematics是数学的一个分支,研究一般代数环境中的同源性。它是一门相对年轻的学科,其起源可以追溯到19世纪末的组合拓扑学(代数拓扑学的前身)和抽象代数(模块和共轭理论)的研究,主要是由亨利-庞加莱和大卫-希尔伯特提出。

离散数学Discrete Mathematics是研究同源漏斗和它们所带来的复杂的代数结构;它的发展与范畴理论的出现紧密地联系在一起。一个核心概念是链复合体,可以通过其同调和同调来研究。它在代数拓扑学中发挥了巨大的作用。它的影响逐渐扩大,目前包括换元代数、代数几何、代数理论、表示理论、数学物理学、算子矩阵、复分析和偏微分方程理论。K理论是一门独立的学科,它借鉴了同调代数的方法,正如阿兰-康尼斯的非交换几何一样。

离散数学Discrete Mathematics代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。 最高质量的离散数学Discrete Mathematics作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此离散数学Discrete Mathematics作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试,包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您,创造模拟试题,提供所有的问题例子,以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试,我们都能帮助您!

在不断发展的过程中,avatest™如今已经成长为论文代写,留学生作业代写服务行业的翘楚和国际领先的教育集团。全体成员以诚信为圆心,以专业为半径,以贴心的服务时刻陪伴着您, 用专业的力量帮助国外学子取得学业上的成功。

•最快12小时交付 

•200+ 英语母语导师 

•70分以下全额退款

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

我们在数学Mathematics代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在离散数学Discrete Mathematics代写方面经验极为丰富,各种离散数学Discrete Mathematics相关的作业也就用不着 说。

数学代写|离散数学代写Discrete Mathematics代考|MATH215 Planar Graphs

数学代写|离散数学代写Discrete Mathematics代考|Planar Graphs

Suppose we have a graph $G$ and that we want to draw it “nicely” on a piece of paper, which means that we draw the vertices as points and the edges as line segments joining some of these points, in such a way that no two edges cross each other, except possibly at common endpoints. We have more flexibility and still have a nice picture if we allow each abstract edge to be represented by a continuous simple curve (a curve that has no self-intersection), that is, a subset of the plane homeomorphic to the closed interval $[0,1]$ (in the case of a loop, a subset homeomorphic to the circle, $S^1$ ). If a graph can be drawn in such a fashion, it is called a planar graph. For example, consider the graph depicted in Figure 10.54.

If we look at Figure 10.54, we may believe that the graph $G$ is not planar, but this is not so. In fact, by moving the vertices in the plane and by continuously deforming some of the edges, we can obtain a planar drawing of the same graph, as shown in Figure $10.55$.

However, we should not be overly optimistic. Indeed, if we add an edge from node 5 to node 4 , obtaining the graph known as $K_5$ shown in Figure 10.56, it can be shown that there is no way to move the nodes around and deform the edge continuously to obtain a planar graph (we prove this a little later using the Euler formula). Another graph that is nonplanar is the bipartite grapk $K_{3,3}$. The two graphs, $K_5$ and $K_{3,3}$ play a special role with respect to planarity. Indeed, a famous theorem of $\mathrm{Ku}-$ ratowski says that a graph is planar if and only if it does not contain $K_5$ or $K_{3,3}$ as a minor (we explain later what a minor is).

数学代写|离散数学代写Discrete Mathematics代考|Criteria for Planarity

Let us now go back to Kuratowski’s criterion for nonplanarity. For this it is useful to introduce the notion of edge contraction in a graph.

Definition 10.32. Let $G=(V, E, s t)$ be any graph and let $e$ be any edge of $G$. The graph obtained by contracting the edge e into a new vertex $v_e$ is the graph $G / e=$ $\left(V^{\prime}, E^{\prime}, s t^{\prime}\right)$ with $V^{\prime}=(V-s t(e)) \cup\left{v_e\right}$, where $v_e$ is a new node $\left(v_e \notin V\right) ; E^{\prime}=$ $E-{e} ;$ and with
$$
s t^{\prime}\left(e^{\prime}\right)= \begin{cases}s t\left(e^{\prime}\right) & \text { if } s t\left(e^{\prime}\right) \cap s t(e)=\emptyset \ \left{v_e\right} & \text { if } s t\left(e^{\prime}\right)=s t(e) \ \left{u, v_e\right} & \text { if } s t\left(e^{\prime}\right) \cap s t(e)={z} \text { and } s t\left(e^{\prime}\right)={u, z} \text { with } u \neq z \ \left{v_e\right} & \text { if } s t\left(e^{\prime}\right)={x} \text { or } s t\left(e^{\prime}\right)={y} \text { with } s t(e)={x, y} .\end{cases}
$$
If $G$ is not a simple graph, then we need to eliminate parallel edges and loops. In this case, $e={x, y}$ and $G / e=\left(V^{\prime}, E^{\prime}, s t\right)$ is defined so that $V^{\prime}=(V-{x, y}) \cup\left{v_e\right}$, where $v_e$ is a new node and
$$
\begin{aligned}
E^{\prime}=&{{u, v} \mid{u, v} \cap{x, y}=\emptyset} \
& \cup\left{\left{u, v_e\right} \mid{u, x} \in E-{e} \quad \text { or } \quad{u, y} \in E-{e}\right} .
\end{aligned}
$$
Figure $10.61$ shows the result of contracting the upper edge ${2,4}$ (shown as a thicker line) in the graph shown on the left, which is not a simple graph.

数学代写|离散数学代写Discrete Mathematics代考|MATH215 Planar Graphs

离散数学代写

数学代写|离散数学代写离散数学代考|平面图


假设我们有一个图$G$,我们想把它“漂亮地”画在一张纸上,这意味着我们把顶点画为点,把边画为连接这些点的线段,这样就不会有两条边相交,除非可能在公共端点处。如果我们允许每个抽象边用一条连续的简单曲线(一条没有自交的曲线)表示,也就是说,平面的一个子集同胚于闭区间$[0,1]$(在一个环的情况下,一个子集同胚于圆$S^1$),我们就会有更大的灵活性,并且仍然可以得到一个漂亮的图像。如果一个图能以这种方式画出来,它就叫做平面图。例如,考虑图10.54所示的图表


如果我们看一下图10.54,我们可能会认为图$G$不是平面的,但事实并非如此。实际上,通过移动平面上的顶点,并对其中的一些边进行连续变形,我们可以得到同一图形的平面绘图,如图$10.55$。


然而,我们不应过于乐观。实际上,如果我们从节点5到节点4添加一条边,得到图10.56所示的图$K_5$,可以看出,没有办法移动节点并连续变形边缘来得到一个平面图(我们稍后使用欧拉公式证明这一点)。另一个非平面图是二部图$K_{3,3}$。这两个图$K_5$和$K_{3,3}$在平面性方面起着特殊的作用。事实上,一个著名的定理$\mathrm{Ku}-$ ratowski说,一个图是平面的,当且仅当它不包含$K_5$或$K_{3,3}$作为次要项(我们稍后解释什么是次要项)

数学代写|离散数学代写离散数学代考|平面性标准


现在让我们回到Kuratowski的非平面性标准。为此,在图中引入边收缩的概念是很有用的

定义10.32。设$G=(V, E, s t)$是任意图,设$e$是$G$的任意边。将边e收缩成一个新的顶点$v_e$得到的图是带有$V^{\prime}=(V-s t(e)) \cup\left{v_e\right}$的图$G / e=$$\left(V^{\prime}, E^{\prime}, s t^{\prime}\right)$,其中$v_e$是一个新的节点$\left(v_e \notin V\right) ; E^{\prime}=$$E-{e} ;$且带有
$$
s t^{\prime}\left(e^{\prime}\right)= \begin{cases}s t\left(e^{\prime}\right) & \text { if } s t\left(e^{\prime}\right) \cap s t(e)=\emptyset \ \left{v_e\right} & \text { if } s t\left(e^{\prime}\right)=s t(e) \ \left{u, v_e\right} & \text { if } s t\left(e^{\prime}\right) \cap s t(e)={z} \text { and } s t\left(e^{\prime}\right)={u, z} \text { with } u \neq z \ \left{v_e\right} & \text { if } s t\left(e^{\prime}\right)={x} \text { or } s t\left(e^{\prime}\right)={y} \text { with } s t(e)={x, y} .\end{cases}
$$
。如果$G$不是一个简单的图,那么我们需要消除平行边和循环。在本例中,$e={x, y}$和$G / e=\left(V^{\prime}, E^{\prime}, s t\right)$被定义为$V^{\prime}=(V-{x, y}) \cup\left{v_e\right}$,其中$v_e$是一个新节点,而
$$
\begin{aligned}
E^{\prime}=&{{u, v} \mid{u, v} \cap{x, y}=\emptyset} \
& \cup\left{\left{u, v_e\right} \mid{u, x} \in E-{e} \quad \text { or } \quad{u, y} \in E-{e}\right} .
\end{aligned}
$$
图$10.61$显示了左图中收缩上边缘${2,4}$(显示为粗线)的结果,这不是一个简单的图。

数学代写|离散数学代写Discrete Mathematics代考

数学代写|离散数学代写Discrete Mathematics代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Write a Reply or Comment

您的电子邮箱地址不会被公开。 必填项已用*标注