Posted on Categories:Finite Element Method, 数学代写, 有限元

数学代写|有限元代写Finite Element Method代考|MEE356 HAMILTON’S PRINCIPLE

如果你也在 怎样代写有限元Finite Element Method MEE356个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。有限元Finite Element Method是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元Finite Element Method是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

有限元Finite Element Method代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。 最高质量的有限元Finite Element Method作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此有限元Finite Element Method作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试,包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您,创造模拟试题,提供所有的问题例子,以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试,我们都能帮助您!

在不断发展的过程中,avatest™如今已经成长为论文代写,留学生作业代写服务行业的翘楚和国际领先的教育集团。全体成员以诚信为圆心,以专业为半径,以贴心的服务时刻陪伴着您, 用专业的力量帮助国外学子取得学业上的成功。

•最快12小时交付 

•200+ 英语母语导师 

•70分以下全额退款

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

我们在数学Mathematics代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在有限元Finite Element Method代写方面经验极为丰富,各种有限元Finite Element Method相关的作业也就用不着 说。

数学代写|有限元代写Finite Element Method代考|MEE356 HAMILTON’S PRINCIPLE

数学代写|有限元代写Finite Element Method代考|HAMILTON’S PRINCIPLE

Hamilton’s principle is a simple yet powerful tool that can be used to derive discretized dynamic system equations. It states simply that

“Of all the admissible time histories of displacement the most accurate solution makes the Lagrangian functional a minimum.”
An admissible displacement must satisfy the following conditions:
(a) the compatibility equations,
(b) the essential or the kinematic boundary conditions, and
(c) the conditions at initial $\left(t_1\right)$ and final time $\left(t_2\right)$.
Condition (a) ensures that the displacements are compatible (continuous) in the problem domain. As will be seen in Chapter 11, there are situations when incompatibility can occur at the edges between elements. Condition (b) ensures that the displacement constraints are satisfied; and condition (c) requires the displacement history to satisfy the constraints at the initial and final times.
Mathematically, Hamilton’s principle states:
$$
\delta \int_{t_1}^{t_2} L \mathrm{~d} t=0
$$
The Langrangian functional, $L$, is obtained using a set of admissible time histories of displacements, and it consists of
$$
L=T-\Pi+W_f
$$
where $T$ is the kinetic energy, $\Pi$ is the potential energy (for our purposes, it is the elastic strain energy), and $W_f$ is the work done by the external forces. The kinetic energy of the entire problem domain is defined in the integral form
$$
T=\frac{1}{2} \int_V \rho \dot{\mathbf{U}}^T \dot{\mathbf{U}} \mathrm{d} V
$$
where $V$ represents the whole volume of the solid, and $\mathbf{U}$ is the set of admissible time histories of displacements.

数学代写|有限元代写Finite Element Method代考|Domain Discretization

The solid body is divided into $N_e$ elements. The procedure is often called meshing, which is usually performed using so-called pre-processors. This is especially true for complex geometries. Figure $3.1$ shows an example of a mesh for a two-dimensional solid.

The pre-processor generates unique numbers for all the elements and nodes for the solid or structure in a proper manner. An element is formed by connecting its nodes in a pre-defined consistent fashion to create the connectivity of the element. All the elements together form the entire domain of the problem without any gap or overlapping. It is possible for the domain to consist of different types of elements with different numbers of nodes, as long as they are compatible (no gaps and overlapping; the admissible condition (a) required by Hamilton’s principle) on the boundaries between different elements. The density of the mesh depends upon the accuracy requirement of the analysis and the computational resources available. Generally, a finer mesh will yield results that are more accurate, but will increase the computational cost. As such, the mesh is usually not uniform, with a finer mesh being used in the areas where the displacement gradient is larger or where the accuracy is critical to the analysis. The purpose of the domain discretization is to make it easier in assuming the pattern of the displacement field.

The FEM formulation has to be based on a coordinate system. In formulating FEM equations for elements, it is often convenient to use a local coordinate system that is defined for an element in reference to the global coordination system that is usually defined for the entire structure, as shown in Figure 3.4. Based on the local coordinate system defined on an element, the displacement within the element is now assumed simply by polynomial interpolation using the displacements at its nodes (or nodal displacements) as
$$
\mathbf{U}^h(x, y, z)=\sum_{i=1}^{n_d} \mathbf{N}i(x, y, z) \mathbf{d}_i=\mathbf{N}(x, y, z) \mathbf{d}_e $$ where the superscript $h$ stands for approximation, $n_d$ is the number of nodes forming the element, and $\mathbf{d}_i$ is the nodal displacement at the $i$ th node, which is the unknown the analyst wants to compute, and can be expressed in a general form of $$ \mathbf{d}_i=\left{\begin{array}{c} d_1 \ d_2 \ \vdots \ d{n_f}
\end{array}\right} \rightarrow \begin{aligned}
&\rightarrow \text { displacement component } 1 \
&\rightarrow \text { displacement component } 2 \
&\vdots \
&\text { displacement component } n_f
\end{aligned}
$$

数学代写|有限元代写Finite Element Method代考|MEE356 HAMILTON’S PRINCIPLE

有限元代写

数学代写|有限元代写Finite Element Method代考|HAMILTON’S PRINCIPLE


汉密尔顿原埋是一种简单而强大的工具,可用于导出离散的动态系统方程。它简单地说
“在所有允许的位移时间历史中,最准确的解快方安使拉格朗日函数最小。”
允许位移必须满足以下条件:
(a) 相容方程,
(b) 基本或运动边界条件,以及
(c) 初始条件 $\left(t_1\right)$ 最后一次 $\left(t_2\right)$.
不兼容。条件 (b) 确保满足位移约束;条件 (c) 要求位移历史满足初始和最终时间的约束。
在数学上,汉密尔顿原埋指出:
$$
\delta \int_{t_1}^{t_2} L \mathrm{~d} t=0
$$
朗朗日泛函, $L$, 是使用一组允许的位移时程获得的,它包括
$$
L=T-\Pi+W_f
$$
在郘里 $T$ 是动能, П是势能 (为了我们的目的,它是柛性应弯能),并且 $W_f$ 是外力做的功。整个问题域的动能以积分形式定义
$$
T=\frac{1}{2} \int_V \rho \dot{\mathbf{U}}^T \dot{\mathbf{U}} \mathrm{d} V
$$
在哪里 $V$ 表示固体的整个体积,并且 $\mathbf{U}$ 是一组允许的位移时间历史。


数学代写|有限元代写Finite Element Method代考|Domain Discretization


实体分为 $N_e$ 元挈。该过程通常称为网格划分,通常使用所诮的预处理器执行。对于复杂的几何形状尤其如此。数字 $3.1$ 显示了二维 实体的网格示例。
预处理器以以适当的方式为实体或洁构的所有元䨂和节点生成唯一编昊。一个元耖是通过以预定义的一致方式连接其节点来形成的,
只要它们在不同元拜之间的边界上是兼容的(没有间隙和重㠬;哈密顿原理要求的允许条件 (a))。网格的密度取决于分析的精 度要求和可用的计算冷源。通常,更精细的网格会产生更准确的结果,但会增加计算成本。像这样,网格通常不均匀,在位移梯度 较大或精度对分析至关重要的区域使用更精细的网格。域离散化的目的是更容易假设位移场的模式。

FEM 公式必须基于坐标系。在为单元制定 FEM 方程时,通常方便地使用为单元定义的局部坐标系,参考通常为整个结构定义的全 局坐标系,如图 $3.4$ 所示。基于单元上定义的局部坐标系,单元内的位移现在通过多项式揷值简单地假设,使用其节点处的位移 (或节点位移) 为
$$
\mathbf{U}^h(x, y, z)=\sum_{i=1}^{n_d} \mathbf{N} i(x, y, z) \mathbf{d}_i=\mathbf{N}(x, y, z) \mathbf{d}_e
$$
上标在哪里 $h$ 代表近似值, $n_d$ 是形成元售的节点数,并且 $\mathbf{d}_i$ 是节点位移 $i$ 第 th 节点,即分析师想要计算的末知数,可以表示为
〈left 的分隔符缺失或无法识别

数学代写|有限元代写Finite Element Method代考

数学代写|有限元代写Finite Element Method代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Write a Reply or Comment

您的电子邮箱地址不会被公开。 必填项已用 * 标注