Posted on Categories:CS代写, 计算机代写, 计算机图形

# 计算机代写|计算机图形学代考Computer Graphics代考|CS559 Binary Numbers

avatest™

## avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试，包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您，创造模拟试题，提供所有的问题例子，以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试，我们都能帮助您！

•最快12小时交付

•200+ 英语母语导师

•70分以下全额退款

## 计算机代写|计算机图形学代考Computer Graphics代考|Binary Numbers

The binary number system has $B=2$, and $a$ to $h$ are 0 or 1 :
$$\ldots a 2^3+b 2^2+c 2^1+d 2^0+e 2^{-1}+f 2^{-2}+g 2^{-3}+h 2^{-4} \ldots$$
and the first 13 binary numbers are:
$$1_2, 10_2, 11_2, 100_2, 101_2, 110_2, 111_2, 1000_2, 1001_2, 1010_2, 1011_2, 1100_2, 1101_2 .$$
Thus $11011.11_2$ is converted to decimal as follows:
$$\begin{gathered} \left(1 \times 2^4\right)+\left(1 \times 2^3\right)+\left(0 \times 2^2\right)+\left(1 \times 2^1\right)+\left(1 \times 2^0\right)+\left(1 \times 2^{-1}\right)+\left(1 \times 2^{-2}\right) \ (1 \times 16)+(1 \times 8)+(0 \times 4)+(1 \times 2)+(1 \times 0.5)+(1 \times 0.25) \ (16+8+2)+(0.5+0.25) \ 26.75 \end{gathered}$$
The reason why computers work with binary numbers-rather than decimal-is due to the difficulty of designing electrical circuits that can store decimal numbers in a stable fashion. A switch, where the open state represents 0 , and the closed state represents 1 , is the simplest electrical component to emulate. No matter how often it is used, or how old it becomes, it will always behave like a switch. The main advantage of electrical circuits is that they can be switched on and off trillions of times a second, and the only disadvantage is that the encoded binary numbers and characters contain a large number of bits, and humans are not familiar with binary.

The hexadecimal number system has $B=16$, and $a$ to $h$ can be 0 to 15 , which presents a slight problem, as we don’t have 15 different numerical characters. Consequently, we use 0 to 9 , and the letters $A, B, C, D, E, F$ to represent $10,11,12,13,14,15$ respectively:

$\ldots a 16^3+b 16^2+c 16^1+d 16^0+e 16^{-1}+f 16^{-2}+g 16^{-3}+h 16^{-4} \ldots$
and the first 17 hexadecimal numbers are:
$$1_{16}, 2_{16}, 3_{16}, 4_{16}, 5_{16}, 6_{16}, 7_{16}, 8_{16}, 9_{16}, A_{16}, B_{16}, C_{16}, D_{16}, E_{16}, F_{16}, 10_{16}, 11_{16} \text {. }$$
Thus $1 E .8_{16}$ is converted to decimal as follows:
$$\begin{gathered} (1 \times 16)+(E \times 1)+\left(8 \times 16^{-1}\right) \ (16+14)+(8 / 16) \ 30.5 \end{gathered}$$
Although it is not obvious, binary, octal and hexadecimal numbers are closely related, which is why they are part of a programmer’s toolkit. Even though computers work with binary, it’s the last thing a programmer wants to use. So to simplify the manmachine interface, binary is converted into octal or hexadecimal. To illustrate this, let’s convert the 16-bit binary code 1101011000110001 into octal.
Using the following general binary integer
$$a 2^8+b 2^7+c 2^6+d 2^5+e 2^4+f 2^3+g 2^2+h 2^1+i 2^0$$
we group the terms into threes, starting from the right, because $2^3=8$ :
$$\left(a 2^8+b 2^7+c 2^6\right)+\left(d 2^5+e 2^4+f 2^3\right)+\left(g 2^2+h 2^1+i 2^0\right) .$$

## 计算机代写|计算机图形学代考Computer Graphics代考|Binary Numbers

$$\ldots a 2^3+b 2^2+c 2^1+d 2^0+e 2^{-1}+f 2^{-2}+g 2^{-3}+h 2^{-4} \ldots$$

$$1_2, 10_2, 11_2, 100_2, 101_2, 110_2, 111_2, 1000_2, 1001_2, 1010_2, 1011_2, 1100_2, 1101_2 .$$

$$\left(1 \times 2^4\right)+\left(1 \times 2^3\right)+\left(0 \times 2^2\right)+\left(1 \times 2^1\right)+\left(1 \times 2^0\right)+\left(1 \times 2^{-1}\right)+\left(1 \times 2^{-2}\right)(1 \times 16)+(1 \times 8)+(0 \times 4)+(1 \times 2)+(1 \times 0.5)+(1 \times 0.25)(16+8$$

0 ，闭合状态代表 1 ，是最简单的电子组件来模拟。无论使用多久，或使用多久，它的行为始終像一个开关。电路的主要优点是每 秒可以开关数万亿次，唯一的缺点是编的的二进制数和字符包含大量的比特，而人类对二进制并不孰悉。

$\ldots a 16^3+b 16^2+c 16^1+d 16^0+e 16^{-1}+f 16^{-2}+g 16^{-3}+h 16^{-4} \ldots$

$$1_{16}, 2_{16}, 3_{16}, 4_{16}, 5_{16}, 6_{16}, 7_{16}, 8_{16}, 9_{16}, A_{16}, B_{16}, C_{16}, D_{16}, E_{16}, F_{16}, 10_{16}, 11_{16} .$$

$$(1 \times 16)+(E \times 1)+\left(8 \times 16^{-1}\right)(16+14)+(8 / 16) 30.5$$

$$a 2^8+b 2^7+c 2^6+d 2^5+e 2^4+f 2^3+g 2^2+h 2^1+i 2^0$$

$$\left(a 2^8+b 2^7+c 2^6\right)+\left(d 2^5+e 2^4+f 2^3\right)+\left(g 2^2+h 2^1+i 2^0\right) .$$

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。