Posted on Categories:Monte Carlo Method, 数学代写, 蒙特卡罗模拟

数学代写|蒙特卡罗模拟代考Monte Carlo Method代考|Math577 Linear Transformations

如果你也在 怎样代写蒙特卡罗模拟Monte Carlo Method Math577这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。蒙特卡罗模拟Monte Carlo Method或称蒙特卡洛实验,是一类广泛的计算算法,依靠重复随机抽样来获得数值结果。其基本概念是利用随机性来解决原则上可能是确定性的问题。它们经常用于物理和数学问题,在难以或不可能使用其他方法的情况下最为有用。蒙特卡洛方法主要用于三类问题:优化,数值积分,以及从概率分布中生成抽样。

蒙特卡罗模拟Monte Carlo Method原则上,蒙特卡洛方法可以用来解决任何具有概率解释的问题。根据大数法则,一些随机变量的预期值所描述的积分可以通过取该变量的独立样本的经验平均值(又称 “样本平均值”)来近似。当变量的概率分布被参数化时,数学家经常使用马尔科夫链蒙特卡洛(MCMC)采样器。中心思想是设计一个具有规定的静止概率分布的明智的马尔科夫链模型。也就是说,在极限情况下,由MCMC方法产生的样本将是所需(目标)分布的样本。根据遍历定理,静止分布由MCMC采样器的随机状态的经验度量近似。

蒙特卡罗模拟Monte Carlo Method代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。 最高质量的蒙特卡罗模拟Monte Carlo Method作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此蒙特卡罗模拟Monte Carlo Method作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试,包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您,创造模拟试题,提供所有的问题例子,以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试,我们都能帮助您!

在不断发展的过程中,avatest™如今已经成长为论文代写,留学生作业代写服务行业的翘楚和国际领先的教育集团。全体成员以诚信为圆心,以专业为半径,以贴心的服务时刻陪伴着您, 用专业的力量帮助国外学子取得学业上的成功。

•最快12小时交付 

•200+ 英语母语导师 

•70分以下全额退款

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

我们在数学Mathematics代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在蒙特卡罗模拟Monte Carlo Method代写方面经验极为丰富,各种蒙特卡罗模拟Monte Carlo Method相关的作业也就用不着 说。

数学代写|蒙特卡罗模拟代考Monte Carlo Method代考|Math577 Linear Transformations

数学代写|蒙特卡罗模拟代考Monte Carlo Method代考|Linear Transformations

Let $\mathbf{x}=\left(x_1, \ldots, x_n\right)^{\top}$ be a column vector in $\mathbb{R}^n$ and $A$ an $m \times n$ matrix. The mapping $\mathbf{x} \mapsto \mathbf{z}$, with $\mathbf{z}=A \mathbf{x}$, is called a linear transformation. Now consider a random vector $\mathbf{X}=\left(X_1, \ldots, X_n\right)^{\top}$, and let
$$
\mathbf{Z}=A \mathbf{X} \text {. }
$$
Then $\mathbf{Z}$ is a random vector in $\mathbb{R}^m$. In principle, if we know the joint distribution of $\mathbf{X}$, then we can derive the joint distribution of $\mathbf{Z}$. Let us first see how the expectation vector and covariance matrix are transformed.

Theorem 1.8.1 If $\mathbf{X}$ has an expectation vector $\boldsymbol{\mu}{\mathbf{X}}$ and covariance matrix $\Sigma{\mathbf{X}}$, then the expectation vector and covariance matrix of $\mathbf{Z}=A \mathbf{X}$ are given by
$$
\mu_{\mathbf{Z}}=A \mu_{\mathbf{X}}
$$
and
$$
\Sigma_{\mathbf{Z}}=A \Sigma_{\mathbf{X}} A^{\top} .
$$
Proof: We have $\boldsymbol{\mu}{\mathbf{Z}}=\mathbb{E}[\mathbf{Z}]=\mathbb{E}[A \mathbf{X}]=A \mathbb{E}[\mathbf{X}]=A \boldsymbol{\mu}{\mathbf{X}}$ and
$$
\begin{aligned}
\Sigma_{\mathbf{Z}} &=\mathbb{E}\left[\left(\mathbf{Z}-\boldsymbol{\mu}{\mathbf{Z}}\right)\left(\mathbf{Z}-\boldsymbol{\mu}{\mathbf{Z}}\right)^{\top}\right]=\mathbb{E}\left[A\left(\mathbf{X}-\boldsymbol{\mu}{\mathbf{X}}\right)\left(A\left(\mathbf{X}-\boldsymbol{\mu}{\mathbf{X}}\right)\right)^{\top}\right] \
&=A \mathbb{E}\left[\left(\mathbf{X}-\boldsymbol{\mu}{\mathbf{X}}\right)\left(\mathbf{X}-\boldsymbol{\mu}{\mathbf{X}}\right)^{\top}\right] A^{\top} \
&=A \Sigma_{\mathbf{X}} A^{\top}
\end{aligned}
$$

数学代写|蒙特卡罗模拟代考Monte Carlo Method代考|General Transformations

We can apply reasoning similar to that above to deal with general transformations $\mathbf{x} \mapsto \boldsymbol{g}(\mathbf{x})$, written out as
$$
\left(\begin{array}{c}
x_1 \
x_2 \
\vdots \
x_n
\end{array}\right) \mapsto\left(\begin{array}{c}
g_1(\mathbf{x}) \
g_2(\mathbf{x}) \
\vdots \
g_n(\mathbf{x})
\end{array}\right) .
$$
For a fixed $\mathbf{x}$, let $\mathbf{z}=\boldsymbol{g}(\mathbf{x})$. Suppose that $\boldsymbol{g}$ is invertible; hence $\mathbf{x}=\boldsymbol{g}^{-1}$ (z). Any infinitesimal $n$-dimensional rectangle at $\mathbf{x}$ with volume $V$ is transformed into an $n$-dimensional parallelepiped at $\mathbf{z}$ with volume $V\left|J_{\mathbf{x}}(\boldsymbol{g})\right|$, where $J_{\mathbf{x}}(\boldsymbol{g})$ is the matrix of Jacobi at $\mathbf{x}$ of the transformation $\boldsymbol{g}$, that is,
$$
J_{\mathbf{x}}(\boldsymbol{g})=\left(\begin{array}{ccc}
\frac{\partial g_1}{\partial x_1} & \cdots & \frac{\partial g_1}{\partial x_n} \
\vdots & \cdots & \vdots \
\frac{\partial g_n}{\partial x_1} & \cdots & \frac{\partial g_n}{\partial x_n}
\end{array}\right) .
$$
Now consider a random column vector $\mathbf{Z}=\boldsymbol{g}(\mathbf{X})$. Let $C$ be a small cube around $\mathbf{z}$ with volume $h^n$. Let $D$ be the image of $C$ under $\boldsymbol{g}^{-1}$. Then, as in the linear case,
$$
\mathbb{P}(\mathbf{Z} \in C) \approx h^n f_{\mathbf{Z}}(\mathbf{z}) \approx h^n\left|J_{\mathbf{z}}\left(\boldsymbol{g}^{-1}\right)\right| f_{\mathbf{X}}(\mathbf{x}) .
$$
Hence we have the transformation rule
$$
f_{\mathbf{Z}}(\mathbf{z})=f_{\mathbf{X}}\left(\boldsymbol{g}^{-1}(\mathbf{z})\right)\left|J_{\mathbf{z}}\left(\boldsymbol{g}^{-1}\right)\right|, \quad \mathbf{z} \in \mathbb{R}^n .
$$
(Note: $\left.\left|J_{\mathbf{z}}\left(\boldsymbol{g}^{-1}\right)\right|=1 /\left|J_{\mathbf{x}}(\boldsymbol{g})\right| \cdot\right)$

数学代写|蒙特卡罗模拟代考Monte Carlo Method代考|Math577 Linear Transformations

蒙特卡罗模拟代考

数学代写|蒙特卡罗模拟代考Monte Carlo Method代考|Linear Transformations

量 $\mathbf{X}=\left(X_1, \ldots, X_n\right)^{\top}$ ,然后让
$$
\mathbf{Z}=A \mathbf{X} .
$$
然后 $\mathbf{Z}$ 是一个随机向量 $\mathbb{R}^m$. 原则上,如果我们知道的联合分布 $\mathbf{X}$ ,然后我们可以推导出联合分布 $\mathbf{Z}$. 让我们先看看期肓向量和协方 差矩阵是如何新换的。
定理 1.8.1 如果 $\mathbf{X}$ 有一个期望向量 $\boldsymbol{\mu} \mathbf{X}$ 和协方差矩阵 $\Sigma \mathbf{X}$ ,然后是期望向量和协方差矩阵 $\mathbf{Z}=A \mathbf{X}$ 由
$$
\mu_{\mathbf{Z}}=A \mu_{\mathbf{X}}
$$

$$
\Sigma_{\mathbf{Z}}=A \Sigma_{\mathbf{X}} A^{\top} .
$$
证明: 我们有 $\mu \mathbf{Z}=\mathbb{E}[\mathbf{Z}]=\mathbb{E}[A \mathbf{X}]=A \mathbb{E}[\mathbf{X}]=A \boldsymbol{X} \mathbf{X}$ 和
$$
\Sigma_{\mathbf{Z}}=\mathbb{E}\left[(\mathbf{Z}-\boldsymbol{\mu} \mathbf{Z})(\mathbf{Z}-\boldsymbol{\mu} \mathbf{Z})^{\top}\right]=\mathbb{E}\left[A(\mathbf{X}-\boldsymbol{\mu} \mathbf{X})(A(\mathbf{X}-\boldsymbol{\mu} \mathbf{X}))^{\top}\right]=A \mathbb{E}\left[(\mathbf{X}-\boldsymbol{\mu} \mathbf{X})(\mathbf{X}-\boldsymbol{\mu} \mathbf{X})^{\top}\right] A^{\top}=A \Sigma_{\mathbf{X}} A^{\top}
$$


数学代写|蒙特卡罗模拟代考Monte Carlo Method代考|General Transformations


我们可以应用与上述类似的推理来处理一般孪㛟 $\mathbf{x} \mapsto g(\mathbf{x})$, 写成
$$
\left(x_1 x_2 \vdots x_n\right) \mapsto\left(g_1(\mathbf{x}) g_2(\mathbf{x}) \vdots g_n(\mathbf{x})\right)
$$
对于一个固定的 $\mathbf{x} ,$ 让 $\mathbf{z}=\boldsymbol{g}(\mathbf{x})$. 假设 $\boldsymbol{g}$ 是可逆的; 因此 $\mathbf{x}=\boldsymbol{g}^{-1}(\mathrm{z})$. 任何无穷小 $n$ 维矩形在 $\mathbf{X}$ 有体积 $V$ 被转化为 $n-$ 维平行六面体 在 $\mathbf{z}$ 有体积 $V\left|J_{\mathbf{x}}(\boldsymbol{g})\right|$ ,在哪里 $J_{\mathbf{x}}(\boldsymbol{g})$ 是雅可比矩阵 $\mathbf{x}$ 转变的 $\boldsymbol{g}$ ,那是,
$$
J_{\mathbf{x}}(\boldsymbol{g})=\left(\begin{array}{lllllll}
\frac{\partial g_1}{\partial x_1} & \cdots & \frac{\partial g_1}{\partial x_n} & \ldots & \vdots \frac{\partial g_n}{\partial x_1} & \cdots & \frac{\partial g_n}{\partial x_n}
\end{array}\right) .
$$
现在考虑一个随机列向量 $\mathbf{Z}=\boldsymbol{g}(\mathbf{X})$. 让 $C$ 周围是 个小立方体 $\mathbf{z}$ 有体积 $h^n$. 让 $D$ 成为的形象 $C$ 在下面 $\boldsymbol{g}^{-1}$. 然后,与线性情况一 样,
$$
\mathbb{P}(\mathbf{Z} \in C) \approx h^n f \mathbf{Z}(\mathbf{z}) \approx h^n\left|J_{\mathbf{z}}\left(\boldsymbol{g}^{-1}\right)\right| f_{\mathbf{X}}(\mathbf{x}) .
$$
因此我们有转换规则
$$
f_{\mathbf{Z}}(\mathbf{z})=f_{\mathbf{X}}\left(\boldsymbol{g}^{-1}(\mathbf{z})\right)\left|J_{\mathbf{z}}\left(\boldsymbol{g}^{-1}\right)\right|, \quad \mathbf{z} \in \mathbb{R}^n .
$$
(笔记: $\left.\left|J_{\mathrm{z}}\left(\boldsymbol{g}^{-1}\right)\right|=1 /\left|J_{\mathbf{x}}(\boldsymbol{g})\right| \cdot\right)$

数学代写|蒙特卡罗模拟代考Monte Carlo Method代考

数学代写|蒙特卡罗模拟代考Monte Carlo Method代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Write a Reply or Comment

您的电子邮箱地址不会被公开。 必填项已用 * 标注