Posted on Categories:Algebraic Number Theory, 代数数论, 代數數論, 数学代写, 数的几何代写Geometry of Numbers

# 数学代写|代數數論代写Algebraic Number Theory代考|Math46400 Analytical continuation of the Riemann zetafunction

avatest™

## avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试，包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您，创造模拟试题，提供所有的问题例子，以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试，我们都能帮助您！

•最快12小时交付

•200+ 英语母语导师

•70分以下全额退款

## 数学代写|代数数论代写Algebraic Number Theory代考|Analytical continuation of the Riemann zetafunction

For $\varphi(x) \in \mathcal{S}(\mathbb{R})$ and $r>0$ set $\varphi(r \mathbb{Z}) \stackrel{\text { def }}{=} \sum_{n \neq 0} \varphi(r n)=\left(\sum_{x \in r \mathbb{Z}} \varphi(x)\right)-\varphi(0)$. Now define the zeta-integral
$$Z(\varphi ; s)=\int_0^{\infty} \varphi(r \mathbb{Z}) r^s \frac{d r}{r} .$$
REMARK 208. Note that we may assume wlog that $\Phi(r)$ is even, so we may consider this an integral on $\mathbb{R}^{\times} / \mathbb{Z}^{\times}$.

LEMMA 209. The sum defining $\varphi(r \mathbb{Z})$ converges locally uniformly absolutely (in particular this function is continuous), decays faster than any polynomial as $r \rightarrow \infty$ and satisfies $\varphi(r \mathbb{Z})=$ $O\left(r^{-1}\right)$
Proof. Let $N$ be even, and let $C$ be such that $|\varphi(x)| \leq \frac{C}{1+x^N}$ for all $x \in \mathbb{R}$. Then
\begin{aligned} \left|\sum_{n=1}^{\infty} \varphi(r n)\right| & \leq \int_0^{\infty} \frac{C}{1+(r x)^N} \mathrm{~d} x \ &=\left(\int_0^{\infty} \frac{C \mathrm{~d} x}{1+x^N}\right) r^{-N} . \end{aligned}
It follows that the sum conveges absolutely for $|r| \geq r_0$ and that it decays faster than any polynomial. For $r$ small break the sum up into $|n| \leq r^{-1}$ and $|n|>r^{-1}$.

## 数学代写|代数数论代写Algebraic Number Theory代考|The Dedekind Zetafunction

Preliminaries. Fix a number field $K$ of degree $n=[K: \mathbb{Q}]$. Suppose $K$ has $r_1$ (resp. $r_2$ ) real (resp. complex) places so that $r_1+2 r_2=n$.

Let $K_{\infty}=\bigoplus_{v \mid \infty} K_v$ be the archimedean completion in which $\mathcal{O}K$ is a lattice. Write $\mathcal{C}{K / \mathbb{Q}}$ for the complementary module, $d_K$ for the absolute discriminant and write $V$ for the covolume $\operatorname{vol}\left(K_{\infty} / \mathcal{O}_K\right)=2^{-r_2} \sqrt{\left|d_K\right|}$ as computed in Lemma 183.

Let $K_{\infty}^1=\left{r \in K_{\infty}^{\times} \mid|r|=1\right}$, and note that $K_{\infty}^1$ contains the image of the units $\mathcal{O}K^{\times}$. Recalling the map $\log : K{\infty}^{\times} \rightarrow \mathbb{R}^{r_1+r_2}$ from Section $4.4$ we showed there that $\log \left(\mathcal{O}K^{\times}\right)$is a lattice hyperplane $\log \left(K{\infty}^1\right)$, and defined the regulator $R_K$ to be the covolume $\operatorname{vol}\left(\log \left(K_{\infty}^1\right) / \log \left(\mathcal{O}K^{\times}\right)\right)$. Since Ker $\log =\left{\left(r_v\right){v \mid \infty}|\forall v:| r_v \mid=1\right} \simeq{\pm 1}^{r_1}(\mathbb{R} / 2 \pi \mathbb{Z})^{r_2}$ is compact we see that $K_{\infty}^1 / \mathcal{O}K^{\times}$is compact as well. We now record two volume computations we shall need later: LEMMA 212. Let $\mathfrak{c} \subset K$ be a fractional ideal. Then $\operatorname{vol}\left(K{\infty} / \mathfrak{c}\right)=N \mathfrak{c} \cdot V=2^{-r_2} N \mathfrak{c} \sqrt{\left|d_K\right|}$.
LEMMA 213. $\operatorname{vol}\left(K_{\infty}^1 / \mathcal{O}K\right)=\frac{1}{w} 2^{r_1}(2 \pi)^{r_2} R_K$ where $w=#\left(\mathcal{O}_K^{\times}\right){\text {tors }}$ is the numebr of roots of unity in $K$.

PROOF. We verified in Corollary 193 that Ker $\log \cap \mathcal{O}_K^{\times}$is exactly the group of roots of unity.

## 数学代写|代数数论代写Algebraic Number Theory代考|Analytical continuation of the Riemann zetafunction

$$Z(\varphi ; s)=\int_0^{\infty} \varphi(r \mathbb{Z}) r^s \frac{d r}{r} .$$
REMARK 208. 请注意，我们可以假设 $\operatorname{wog} \Phi(r)$ 是偶数，所以我们可以认为这是一个积分 $\mathbb{R}^{\times} / \mathbb{Z}^{\times}$. $O\left(r^{-1}\right)$

$$\left|\sum_{n=1}^{\infty} \varphi(r n)\right| \leq \int_0^{\infty} \frac{C}{1+(r x)^N} \mathrm{~d} x \quad=\left(\int_0^{\infty} \frac{C \mathrm{~d} x}{1+x^N}\right) r^{-N} .$$

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。