Posted on Categories:Financial Econometrics, 经济代写, 计量经济学

# 经济代写|计量经济学代写Introduction to Econometrics代考|ECON-322 Standard Data Structures

avatest™

## avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试，包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您，创造模拟试题，提供所有的问题例子，以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试，我们都能帮助您！

•最快12小时交付

•200+ 英语母语导师

•70分以下全额退款

## 经济代写|计量经济学代写Introduction to Econometrics代考|Standard Data Structures

There are five major types of economic data sets: cross-sectional, time series, panel, clustered, and spatial. They are distinguished by the dependence structure across observations.

Cross-sectional data sets have one observation per individual. Surveys and administrative records are a typical source for cross-sectional data. In typical applications, the individuals surveyed are persons, households, firms or other economic agents. In many contemporary econometric cross-section studies the sample size $n$ is quite large. It is conventional to assume that cross-sectional observations are mutually independent. Most of this text is devoted to the study of cross-section data.

Time series data are indexed by time. Typical examples include macroeconomic aggregates, prices and interest rates. This type of data is characterized by serial dependence. Most aggregate economic data is only available at a low frequency (annual, quarterly or perhaps monthly) so the sample size is typically much smaller than in cross-section studies. An exception is financial data where data are available at a high frequency (weekly, daily, hourly, or by transaction) so sample sizes can be quite large.

Panel data combines elements of cross-section and time series. These data sets consist of a set of individuals (typically persons, households, or corporations) measured repeatedly over time. The common modeling assumption is that the individuals are mutually independent of one another, but a given individual’s observations are mutually dependent. In some panel data contexts, the number of time series observations $T$ per individual is small while the number of individuals $n$ is large. In other panel data contexts (for example when countries or states are taken as the unit of measurement) the number of individuals $n$ can be small while the number of time series observations $T$ can be moderately large. An important issue in econometric panel data is the treatment of error components.

Clustered samples are increasing popular in applied economics and are related to panel data. In clustered sampling, the observations are grouped into “clusters” which are treated as mutually independent yet allowed to be dependent within the cluster. The major difference with panel data is that clustered sampling typically does not explicitly model error component structures, nor the dependence within clusters, but rather is concerned with inference which is robust to arbitrary forms of within-cluster correlation.

Spatial dependence is another model of interdependence. The observations are treated as mutually dependent according to a spatial measure (for example, geographic proximity). Unlike clustering, spatial models allow all observations to be mutually dependent, and typically rely on explicit modeling of the dependence relationships. Spatial dependence can also be viewed as a generalization of time series dependence.

## 经济代写|计量经济学代写Introduction to Econometrics代考|Econometric Software

Economists use a variety of econometric, statistical, and programming software.
Stata (www.stata.com) is a powerful statistical program with a broad set of pre-programmed econometric and statistical tools. It is quite popular among economists, and is continuously being updated with new methods. It is an excellent package for most econometric analysis, but is limited when you want to use new or less-common econometric methods which have not yet been programed. At many points in this textbook specific Stata estimation methods and commands are described. These commands are valid for Stata version 15.

MATLAB (www.mathworks.com), GAUSS (www.aptech.com), and OxMetrics (www.oxmetrics.net) are high-level matrix programming languages with a wide variety of built-in statistical functions. Many econometric methods have been programed in these languages and are available on the web. The advantage of these packages is that you are in complete control of your analysis, and it is easier to program new methods than in Stata. Some disadvantages are that you have to do much of the programming yourself, programming complicated procedures takes significant time, and programming errors are hard to prevent and difficult to detect and eliminate. Of these languages, GAUSS used to be quite popular among econometricians, but currently MATLAB is more popular.

An intermediate choice is R (www.r-project.org). R has the capabilities of the above high-level matrix programming languages, but also has many built-in statistical environments which can replicate much of the functionality of Stata. R is the dominate programming language in the statistics field, so methods developed in that arena are most commonly available in R. Uniquely, R is open-source, user-contributed, and best of all, completely free! A smaller but growing group of econometricians are enthusiastic fans of R.

For highly-intensive computational tasks, some economists write their programs in a standard programming language such as Fortran or C. This can lead to major gains in computational speed, at the cost of increased time in programming and debugging.

There are many other packages which are used by econometricians, include Eviews, Gretl, PcGive, Python, Julia, RATS, and SAS.

As the packages described above have distinct advantages, many empirical economists end up using more than one package. As a student of econometrics, you will learn at least one of these packages, and probably more than one. My advice is that all students of econometrics should develop a basic level of familiarity with Stata, and either Matlab or R (or all three).

## 经济代写|计量经济学代写Introduction to Econometrics代考|Econometric Software

Stata (www.stata.com) 是一个功能强大的统计程序，具有广泛的预编程计量经济学和统计工具集。它在经济学家中很受欢迎，并不断更新新方法。它是大多数计量经济学分析的优秀软件包，但当您想使用尚未编程的新的或不太常见的计量经济学方法时，它会受到限制。在这本教科书中的许多地方描述了特定的 Stata 估计方法和命令。这些命令对 Stata 版本 15 有效。

MATLAB (www.mathworks.com)、GAUSS (www.aptech.com) 和 OxMetrics (www.oxmetrics.net) 是具有多种内置统计函数的高级矩阵编程语言。许多计量经济学方法都是用这些语言编写的，并且可以在网上找到。这些包的优点是您可以完全控制您的分析，并且比在 Stata 中更容易编写新方法。一些缺点是你必须自己做很多编程，编写复杂的程序需要大量时间，并且编程错误难以预防，难以检测和消除。在这些语言中，GAUSS 曾经很受计量经济学家的欢迎，但目前 MATLAB 更受欢迎。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。