如果你也在 怎样代写运筹学Operations Research OPR561这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。运筹学Operations Research(英式英语:operational research),通常简称为OR,是一门研究开发和应用先进的分析方法来改善决策的学科。它有时被认为是数学科学的一个子领域。管理科学一词有时被用作同义词。
运筹学Operations Research采用了其他数学科学的技术,如建模、统计和优化,为复杂的决策问题找到最佳或接近最佳的解决方案。由于强调实际应用,运筹学与许多其他学科有重叠之处,特别是工业工程。运筹学通常关注的是确定一些现实世界目标的极端值:最大(利润、绩效或收益)或最小(损失、风险或成本)。运筹学起源于二战前的军事工作,它的技术已经发展到涉及各种行业的问题。
运筹学Operations Research代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。 最高质量的运筹学Operations Research作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此运筹学Operations Research作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。
avatest™帮您通过考试
avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试,包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您,创造模拟试题,提供所有的问题例子,以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试,我们都能帮助您!
在不断发展的过程中,avatest™如今已经成长为论文代写,留学生作业代写服务行业的翘楚和国际领先的教育集团。全体成员以诚信为圆心,以专业为半径,以贴心的服务时刻陪伴着您, 用专业的力量帮助国外学子取得学业上的成功。
•最快12小时交付
•200+ 英语母语导师
•70分以下全额退款
想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。
我们在数学Mathematics代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在运筹学Operations Research代写方面经验极为丰富,各种运筹学Operations Research相关的作业也就用不着 说。
数学代写|运筹学代写Operations Research代考|ONTINUOUS VARIABLES—HIGHER DEGREE
Minimize $X_1^3-5 X_1^2+8 X_1+X_2^3-2 X_2^2-10 X_2+10$
Subject to
$$
\begin{array}{r}
X_1+X_2 \leq 4 \
X_1, X_2 \geq 0
\end{array}
$$
Stage: Each variable
State: Resource available for allocation
Decision variable: Values of $X_1$ and $X_2$
Criterion of effectiveness: Minimize $Z$
In this problem we first solve for variable $X_1$ and then for variable $X_2$. The objective function is rewritten as:
Minimize $X_2^3-2 X_2^2-10 X_2+X_1^3-5 X_1^2+8 X_1+10$
One more stage to go $n=1$
$$
\begin{aligned}
f_1\left(s_1, X_1\right) & =X_1^3-5 X_1^2+8 X_1+10 \
f_1^\left(s_1\right) & =\text { Minimize } X_1^3-5 X_1^2+8 X_1+10 \ 0 & \leq X_1 \leq s_1 \end{aligned} $$ Differentiating with respect to $X_1$ and equating to zero, we get or $$ \begin{array}{r} 3 X_1^2-10 X_1+8=0 \ X_1=2 \text { or } X_1=\frac{4}{3} \end{array} $$ Second derivative is $6 X_1-10$ and takes positive value for $X_1=2$ indicating minimum. Therefore, $X_1{ }^=2$ if $s_1 \geq 2$ and $X_1^=s_1$ if $s_1<2$. $$ \begin{aligned} f_1^\left(s_1\right) & =8-20+16+10=14 \text { if } s_1 \geq 2 \
& =s_1^3-5 s_1^2+8 s_1+10 \text { if } 0=s_1<2
\end{aligned}
$$
Since the function is cubic, we also verify the value of the function at $X_1=0$. At $X_1=0$, the value of $f_1\left(s_1\right)=10$ which is less than 14 and since $s_1$ can take only non-negative values we have $X_1^=0$ and $f_1^\left(s_1\right)=10$.
数学代写|运筹学代写Operations Research代考|ACTORIZING THE TERMS
Maximize $2 X_1+3 X_2+X_1 X_2$
Subject to
$$
\begin{array}{r}
X_1+X_2 \leq 2 \
X_1, X_2 \geq 0
\end{array}
$$
Stage: Each variable
State: Resource available for allocation
Decision variable: Values of $X_1$ and $X_2$
Criterion of effectiveness: Maximize $Z$
In this example the term $X_1 X_2$ makes it difficult to separate the objective function in terms of separable functions of the variables. We factorize the objective function as:
$$
\text { Maximize }\left(X_1+3\right)\left(X_2+2\right)-6
$$
We can leave out the constant from the objective function and write the problem as:
Maximize $\left(X_1+3\right)\left(X_2+2\right)$
Subject to
$$
\begin{array}{r}
X_1+X_2 \leq 2 \
X_1, X_2 \geq 0
\end{array}
$$
One more stage to go $n=1$
$$
\begin{aligned}
f_1\left(s_1, X_2\right) & =X_2+2 \
f_1^\left(s_1\right) & =\text { Maximize } X_2+2 \end{aligned} $$ Subject to $0 \leq X_2 \leq s_1$ Here, the maximum value is at $X_2^=s_1$ and $f_1^\left(s_1\right)=s_1+2$ Two more stages to go $n=2$ $$ \begin{aligned} f_2\left(2, X_1\right)= & \left(X_1+3\right) f_1^\left(2-X_1\right) \
f_2^\left(s_1\right)= & \text { Maximize }\left(X_1+3\right)\left(2-X_1+2\right) \ & \text { Subject to } 0 \leq X_1 \leq 2 \end{aligned} $$ Maximize $\left(X_1+3\right)\left(4-X_1\right)$ Subject to $0 \leq X_1 \leq 2$ Maximize $-X_1^2+X_1+12$ Differentiating with respect to $X_1$ and equating to zero, we get $X_1=1 / 2$. The second derivative is negative indicating maximum. We have $X_1^=1 / 2, s_1=3 / 2$ and $X_2^*=3 / 2$ with $Z=49 / 4-$ $6=25 / 4$ (for the original problem)
运筹学代写
数学代写|运筹学代写Operations Research代考|ONTINUOUSVARIABLESHIGHER DEGREE
最小化 $X_1^3-5 X_1^2+8 X_1+X_2^3-2 X_2^2-10 X_2+10$
受制于
$$
X_1+X_2 \leq 4 X_1, X_2 \geq 0
$$
阶段: 每个变量
状态: 可用于分配的渴源
决策变量: 值 $X_1$ 和 $X_2$
有效性标准: 最小化Z
在这个问题中,我们首先解抉变量 $X_1$ 然后对于变量 $X_2$. 目标函数重写为:
最小化 $X_2^3-2 X_2^2-10 X_2+X_1^3-5 X_1^2+8 X_1+10$
还有一个阶段要走 $n=1$
$$
f_1\left(s_1, X_1\right)=X_1^3-5 X_1^2+8 X_1+10 f_1^{\left(s_1\right)} \quad=\text { Minimize } X_1^3-5 X_1^2+8 X_1+100 \leq X_1 \leq s_1
$$
关于微分 $X_1$ 等于零,我们得到或
$$
3 X_1^2-10 X_1+8=0 X_1=2 \text { or } X_1=\frac{4}{3}
$$
二阶导数是 $6 X_1-10$ 并为正值 $X_1=2$ 表示最小值。所以, $X_1=2$ 如果 $s_1 \geq 2$ 和 $X_1^{=} s_1$ 如果 $s_1<2$.
$$
f_1^{\left(s_1\right)}=8-20+16+10=14 \text { if } s_1 \geq 2 \quad=s_1^3-5 s_1^2+8 s_1+10 \text { if } 0=s_1<2
$$
由于函数是二次函数,我们还验证了函数的值 $X_1=0$. 在 $X_1=0$ ,的价值 $f_1\left(s_1\right)=10$ 小于 14 ,因为 $s_1$ 只能取我们㶲有的非负 值 $X_1^{=} 0$ 和 $f_1^{\left(s_1\right)}=10$.
数学代写|运筹学代写Operations Research代考|ACTORIZING THE TERMS
最大化 $2 X_1+3 X_2+X_1 X_2$
受制于
$$
X_1+X_2 \leq 2 X_1, X_2 \geq 0
$$
阶段: 每个变量
状态: 可用于分配的㮞源
决策音量: 值 $X_1$ 和 $X_2$
有效性标准: 最大化Z
在这个例子中,术语 $X_1 X_2$ 使得䐚难根据变量的可分离函数来分离目标函数。我们将目标函数分解为:
$$
\text { Maximize }\left(X_1+3\right)\left(X_2+2\right)-6
$$
我们可以从目标函数中省略常量并将问题写为:
最大化 $\left(X_1+3\right)\left(X_2+2\right)$
受制于
$$
X_1+X_2 \leq 2 X_1, X_2 \geq 0
$$
还有一个阶段要走 $n=1$
$$
f_1\left(s_1, X_2\right)=X_2+2 f_1^{\left(s_1\right)} \quad=\text { Maximize } X_2+2
$$
受制于 $0 \leq X_2 \leq s_1$ 这里,最大值在 $X_2^{=} s_1$ 和 $f_1^{\left(s_1\right)}=s_1+2$ 还有两个阶段 $n=2$
$$
f_2\left(2, X_1\right)=\left(X_1+3\right) f_1^{\left(2-X_1\right)} f_2^{\left(s_1\right)}=\quad \text { Maximize }\left(X_1+3\right)\left(2-X_1+2\right) \text { Subject to } 0 \leq X_1 \leq 2
$$
最大化 $\left(X_1+3\right)\left(4-X_1\right)$ 受制于 $0 \leq X_1 \leq 2$ 最大化 $-X_1^2+X_1+12$ 关于微分 $X_1$ 等于零, 我们得到 $X_1=1 / 2$. 二阶导数为 负,表示最大值。我们有 $X_1^{=} 1 / 2, s_1=3 / 2$ 和 $X_2^*=3 / 2$ 和 $Z=49 / 4-6=25 / 4$ (对于原始问题)
数学代写|运筹学代写Operations Research代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。
微观经济学代写
微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。
线性代数代写
线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。
博弈论代写
现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。
微积分代写
微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。
它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。
计量经济学代写
什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。
根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。
MATLAB代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。