Posted on Categories:Thermodynamics, 热力学, 物理代写

物理代写|热力学代写Thermodynamics代考|PHY360 Selective Decay

如果你也在 怎样代写热力学Thermodynamics PHY360这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。热力学Thermodynamics是物理学的一个分支,涉及热、功和温度,以及它们与能量、熵以及物质和辐射的物理特性的关系。这些数量的行为受热力学四大定律的制约,这些定律使用可测量的宏观物理量来传达定量描述,但可以用统计力学的微观成分来解释。热力学适用于科学和工程中的各种主题,特别是物理化学、生物化学、化学工程和机械工程,但也适用于其他复杂领域,如气象学。

热力学Thermodynamics从历史上看,热力学的发展源于提高早期蒸汽机效率的愿望,特别是通过法国物理学家萨迪-卡诺(1824年)的工作,他认为发动机的效率是可以帮助法国赢得拿破仑战争的关键。苏格兰-爱尔兰物理学家开尔文勋爵在1854年首次提出了热力学的简明定义,其中指出:”热力学是关于热与作用在身体相邻部分之间的力的关系,以及热与电的关系的课题。” 鲁道夫-克劳修斯重述了被称为卡诺循环的卡诺原理,为热学理论提供了更真实、更健全的基础。他最重要的论文《论热的运动力》发表于1850年,首次提出了热力学的第二定律。1865年,他提出了熵的概念。1870年,他提出了适用于热的维拉尔定理。

热力学Thermodynamics代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。最高质量的热力学Thermodynamics作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此热力学Thermodynamics作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试,包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您,创造模拟试题,提供所有的问题例子,以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试,我们都能帮助您!

在不断发展的过程中,avatest™如今已经成长为论文代写,留学生作业代写服务行业的翘楚和国际领先的教育集团。全体成员以诚信为圆心,以专业为半径,以贴心的服务时刻陪伴着您, 用专业的力量帮助国外学子取得学业上的成功。

•最快12小时交付 

•200+ 英语母语导师 

•70分以下全额退款

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

我们在物理Physical代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的物理Physical代写服务。我们的专家在热力学Thermodynamics代写方面经验极为丰富,各种热力学Thermodynamics相关的作业也就用不着说。

物理代写|热力学代写Thermodynamics代考|PHY360 Selective Decay

物理代写|热力学代写Thermodynamics代考|Selective Decay

This rather frustrating series of failures may suggest that the problem lies in the common assumption of all the proposals discussed so far: LTE. For example, the equations of motion in many physical systems show that different quantities evolve with different time-scales and spatial scales; this result does not rely on LTE (explicitly, at least). Accordingly, it is at least conceivable that relaxation satisfies the ‘selective decay’ scenario.

The selective decay hypothesis is characterized by the following. If one considers the ‘ideal invariants’ of the system (namely, the quantities which would remain exactly constant during the evolution of the system should no dissipation occur), once dissipation has been introduced these quantities do not remain constant but start decaying, unless the external world somehow maintains their value constant. It is often found that one of these quantities is somehow ‘better conserved’ or ‘more rugged’ than others, i.e. that its typical decay time is much longer than the decay time of other quantities. ${ }^{11}$ If one minimizes the expression for the poorly conserved invariant subject to the constraint that the rugged invariant is conserved using the technique of Lagrange multipliers (Sect. A.3), an Euler-Lagrange equation for the field variables in the relaxed state results. The Lagrange multiplier is the ratio of the poorly conserved invariant to the ruggedly conserved one.

Typically, selective decay applies to problems in two-dimensional and threedimensional magnetohydrodynamics (‘MHD’), where the couples ‘rugged invariant versus poorly conserved invariant’ are ‘energy versus mean square vector potential’ and ‘energy versus magnetic helicity’, respectively. In MHD, for example, a well-known example of relaxed state is described by Taylor’s principle of minimum magnetic energy $\propto \int|\mathbf{B}|^2 d \mathbf{x}$ with fixed magnetic helicity $\int(\mathbf{A} \cdot \mathbf{B}) d \mathbf{x}$ (where $\mathbf{B}=\nabla \wedge \mathbf{A}$ and $\mathbf{A}$ is the vector potential) [25]. In Hall MHD, i.e. a macroscopic description of magnetized plasmas (made of two species, electrons and ions with ion mass $m_{i o n}$ and ion electric charge $q_{i o n}$ ) where electrons are effectively decoupled from ions, the couple ‘rugged invariant versus poorly conserved invariant’ is ‘total (magnetic + kinetic) energy’ versus ‘magnetic helicity and generalized ion helicity $\int(\mathbf{V} \cdot \boldsymbol{\Omega}) d \mathbf{x}$ ‘, with $\mathbf{V} \equiv \mathbf{v}+\frac{q_{\text {ion }}}{m_{\text {ion }}} \mathbf{A}$ and $\boldsymbol{\Omega} \equiv \nabla \wedge \mathbf{V}$. Taylor’s principle is replaced by Turner’s principle [26] of minimization of total energy with two constraints: fixed magnetic helicity and fixed generalized helicity. Remarkably, and in qualitative agreement with Kirchhoff’s principle of Sect. 5.3.1, in order to describe plasmas in the solar corona it has been postulated [27] to replace Turner’s principle with the constrained minimization of Joule heating power; fixed generalized ion helicity and its electron counterpart are the constraints. ${ }^{12}$

物理代写|热力学代写Thermodynamics代考|Maximal Entropy

The principle of ‘maximal entropy’13 dictates that the air in a room initially distributed in clumps moves towards smooth uniformity; thermodynamic equilibrium does not admit large-scale structures. However, for a system with a constrained phase space, maximal entropy can generate large-scale structures as a long-lived intermediate state. Remarkably, no LTE is explicitly invoked. To apply the principle of maximal entropy, one needs to consider a discrete or quantized version of the field variables. If we have $N$ such quanta of the field, ${ }^{14}$ we consider the number of ways these $N$ quanta can be arranged in a given state (like spins up or down). The most probable state is the one with the most permutations or the highest entropy subject to other constraints (such as conservation of energy and particle number); here entropy is defined as the logarithm of the number of permutations times Boltzmann constant. The description of the system is perfectly analogous to the familiar description of the $2 \mathrm{D}$ spin system in statistical mechanics of thermodynamic equilibrium [32]. The maximal entropy perspective addresses the question: are these observed large-scale, self-organized structures in some sense statistically more probable than other less simple ones?

Again, our room is a thermodynamically open system. The room exchanges either heat (across the closed window) or both heat and mass (across the open window) with the external world. In a relaxed state, the long-lived, large-scale structures are supposed to live not just for a long time, but indefinitely. The relevance of these approaches to the relaxed state of our room is, therefore, yet to be proven.

物理代写|热力学代写Thermodynamics代考|PHY360 Selective Decay

热力学代写

物理代写|热力学代写|热力学代考|选择性衰变

这一系列相当令人沮丧的失败可能表明,问题出在迄今为止讨论的所有建议的共同假设上。LTE。例如,许多物理系统的运动方程显示,不同的量以不同的时间尺度和空间尺度演化;这一结果并不依赖LTE(至少是明确的)。因此,至少可以想象,松弛满足了 “选择性衰变 “的假设。
选择性衰变假说的特点是这样的。如果我们考虑系统的 “理想不变量”(即如果没有耗散发生,在系统演化过程中会保持完全恒定的量),一旦耗散被引入,这些量就不会保持恒定,而是开始衰减,除非外部世界以某种方式保持其价值恒定。人们经常发现,这些量中的一个在某种程度上比其他量 “更好地保持 “或 “更坚固”,也就是说,它的典型衰减时间比其他量的衰减时间长得多。${ }^{11}$ 如果使用拉格朗日乘数技术(第A.3节),在崎岖不平的不变量是守恒的约束条件下,使守恒较差的不变量的表达式最小化,就会产生松弛状态下的场变量的欧拉-拉格朗日方程。拉格朗日乘数是保守性差的不变量与保守性强的不变量的比率。
通常,选择性衰变适用于二维和三维磁流体力学中的问题( ${ }^M \mathrm{MHD}^{prime}$ ),其中 “崎岖不变量与保守性差的不变量 “的偶数分别是 “能量与均方矢量势 “和 “能量与磁螺旋度”。以MHD为例,在MHD中。一个众所周知的 在MHD中,一个众所周知的松弛状态的例子是由泰勒最小磁能原理描述的,$propto\int|\mathbf{B}|^2 d \mathbf{x}$,具有固定磁 螺旋度 $int(\mathbf{A} \cdot \mathbf{B}) d \mathbf{x}$ (其中 $\mathbf{B}=\nabla \wedge \mathbf{A}$ 和 $\mathbf{A}$ 是矢量势)[25]。在霍尔MHD中,即 磁化等离子体的宏观描述(由电子和离子两种物质组成,离子质量为$m_{i o n}$,离子电荷为$q_{i o n}$),电子与离子有效解耦。坚固不变量与保守性差的不变量的关系是 “总(磁+动)能 “与 “磁螺旋和广义离子螺旋 $int(\mathbf{V} \cdot \mathbf{Omega}) d \mathbf{x}^{\prime}$,其中 $mathbf{V} \equiv\mathbf{v}+\frac{q_{mathbf{i n a}}}{m_{mathrm{ian}}。\mathbf{A}$和$boldsymbol{Omega} equiv nabla wedge `mathbf{V}$。泰勒原理被特纳原理[26]取代,特纳原理是对总能量的最小化,有两个约束条件:固定的磁螺旋和固定的广义螺旋。值得注意的是,与第5.3.1节的基尔霍夫原理在质量上是一致的,为了描述日冕中的等离子体,已经假定[27]用焦耳加热功率的约束最小化取代特纳原理;固定的广义离子螺旋度及其电子对应物是约束。

物理代写|热力学代写|热力学代考|最大熵

最大熵 “原则13规定,房间里的空气最初以团块形式分布,并向平滑均匀的方向发展;热力学平衡不承认大规模结构。然而,对于一个具有受限相空间的系统,最大熵可以产生大规模的结构,作为一个长期存在的中间状态。值得注意的是,没有明确地引用LTE。为了应用最大熵的原则,我们需要考虑场变量的离散或量化版本。如果我们有这样的场量子,我们就考虑这些量子在一个给定的状态(如旋转上升或下降)中可以排列的方式数量。最有可能的状态是在其他约束条件下(如能量和粒子数的守恒)具有最多的排列方式或最高的熵;这里的熵被定义为排列方式的对数乘以玻尔兹曼常数。对系统的描述完全类似于人们熟悉的热力学平衡中的自旋系统的描述[32]。最大熵的观点解决了这样一个问题:这些观察到的大规模自组织结构在某种意义上是否比其他不太简单的结构在统计上更有可能?

同样,我们的房间是一个热力学上的开放系统。房间与外部世界交换热量(穿过封闭的窗户)或同时交换热量和质量(穿过开放的窗户)。在松弛状态下,长寿的大规模结构应该不仅仅是活了很久,而是无限期的。因此,这些方法与我们房间的放松状态的相关性还有待证明。

物理代写|热力学代写Thermodynamics代考

物理代写|热力学代写Thermodynamics代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Write a Reply or Comment

您的电子邮箱地址不会被公开。 必填项已用 * 标注