Posted on Categories:Digital Signal Processing, 数字信号处理, 电子代写

# 电子代写|数字信号处理代写Digital Signal Processing代考|EE4015 The Continuous Time Fourier Transform, or CTFT

avatest™

## avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试，包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您，创造模拟试题，提供所有的问题例子，以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试，我们都能帮助您！

•最快12小时交付

•200+ 英语母语导师

•70分以下全额退款

## 电子代写|数字信号处理代写Digital Signal Processing代考|The Continuous Time Fourier Transform, or CTFT

The continuous time Fourier transform multiplies an input/test signal, $x(t)$, by a complex analysis tone, $\exp (-j 2 \pi f t)$, to form a waveform that is first integrated and then normalized. As mentioned before, the Fourier transform is in fact the correlation between $x(t)$ and $\exp (j 2 \pi f t)$ at some particular test frequency $f$. The value $T$ in the equation below indicates the length over which $x(t)$ is non-zero.
\begin{aligned} X(f) & =\frac{1}{T} \int_{-\infty}^{\infty} x(t) \cdot\left(e^{j 2 \pi f t}\right)^* d t \ & =\frac{1}{T} \int_{-\infty}^{\infty} x(t) \cdot e^{-j 2 \pi f t} d t \end{aligned}
To make the equation more readable we may express the complex analysis tone in terms of the cosine and sine functions.
\begin{aligned} X(f) & =\frac{1}{T} \int_{-\infty}^{\infty} x(t) \cdot e^{-j 2 \pi f t} d t \ & =\frac{1}{T} \int_{-\infty}^{\infty} x(t) \cdot \cos (2 \pi f t) d t-j \frac{1}{T} \int_{-\infty}^{\infty} x(t) \cdot \sin (2 \pi f t) d t \end{aligned}

## 电子代写|数字信号处理代写Digital Signal Processing代考|The Fourier Transform of Real Signals

The spectrum of a real input signal, $x(t)$, is unique in that its magnitude components will always be an even function versus frequency, whereas its phase components is an odd functions. The Fourier transform finds complex sinusoids that are embedded in our input signals at certain frequencies $f$. In order for the signal to be real, there must exist an additional complex sinusoid at the negative frequency $-f$ such that the imaginary portion of the sum of the two sinusoids cancels. The Fourier transform results at these two frequencies are the complex conjugates of one another.
$$X(f)=X(-f)^*$$
The most obvious real function that demonstrates this fact is the $\cos \left(2 \pi f_o t\right)=1 / 2 \cdot \mathrm{e}^{22 \pi / o t}+1 / 2 \cdot \mathrm{e}^{-j 2 \pi f o t}$ expression. The two sinusoids rotate in opposite directions and are guaranteed to be complex conjugates of one another since they both start at an angle of zero. For a slightly more challenging real function, let us look at $\sin \left(2 \pi f_o t\right)$, which features two complex sinusoids rotating in opposite directions but starting at different phases.
\begin{aligned} \sin \left(2 \pi f_o t\right. & =\frac{1}{2 j}\left(e^{j 2 \pi f_o t}-e^{-j 2 \pi f_o t}\right) \ & =-j \frac{1}{2}\left(e^{j 2 \pi f_o t}+e^{-j 2 \pi f_o t} e^{j \pi}\right) \ & =e^{-j \frac{\pi}{2}} \frac{1}{2}\left(e^{j 2 \pi f_o t}+e^{-j 2 \pi f_o t} e^{j \pi}\right) \ & =\frac{1}{2}\left(e^{j 2 \pi f_o t} \cdot e^{-j \frac{\pi}{2}}+e^{-j 2 \pi f_o t} \cdot e^{j \frac{\pi}{2}}\right) \end{aligned}

## 电子代写|数字信号处理代写数字信号处理代考|连续时间傅里叶变换，或CTFT

$$X(f)=frac{1}{T}。\int_{-\infty}^{\infty} x(t) \cdot\left(e^{j 2 pi f t}\right)^* d t \quad=\frac{1}{T } \int_{-\infty}^{infty} x(t) cdot e^{-j 2 \pi f t} d t$$

$$X(f)=\frac{1}{T} \int_{-\infty}^{\infty} x(t) cdot e^{-j 2 \pi f t} d t \quad=\frac{1}{T } \int_{-\infty}^{infty} x(t) cdot \cos (2 \pi f t) d t-j \frac{1}{T}. \yint_{-\infty}^{infty} x(t) cdot cos (2 \pi f t) d t$$

## 电子代写数字信号处理代写数字信号处理代考|实数信号的傅里叶变换

$$X(f)=X(-f)^*$$

\sin \left(2 \pi f_o t=\frac{1}{2 j}\left(e^{j 2 \pi f_o t}-e^{-j 2 \pi f_o t}\right) \quad=-j \frac{1}{2}\left(e^{j 2 \pi f_o t}+e^{-j 2 \ pi }\right) =e^{-j \frac{pi }{2}}. \frac{1}{2}\left(e^{j 2\pi f_d t}+e^{-j 2 \pi f_{f_t} e^{j \pi}\right)\quad=frac{1}{2}\left(e^{j 2\pi f_d t}) \cdot e^{-j frac{{pi}{2}}+e^{-j 2pi f_d t}. \cdot e^{j frac{pi}{2}}}\right）\right。


## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。