如果你也在 怎样代写博弈论Game theory ECON7062这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。博弈论Game theory在20世纪50年代被许多学者广泛地发展。它在20世纪70年代被明确地应用于进化论,尽管类似的发展至少可以追溯到20世纪30年代。博弈论已被广泛认为是许多领域的重要工具。截至2020年,随着诺贝尔经济学纪念奖被授予博弈理论家保罗-米尔格伦和罗伯特-B-威尔逊,已有15位博弈理论家获得了诺贝尔经济学奖。约翰-梅纳德-史密斯因其对进化博弈论的应用而被授予克拉福德奖。
博弈论Game theory是对理性主体之间战略互动的数学模型的研究。它在社会科学的所有领域,以及逻辑学、系统科学和计算机科学中都有应用。最初,它针对的是两人的零和博弈,其中每个参与者的收益或损失都与其他参与者的收益或损失完全平衡。在21世纪,博弈论适用于广泛的行为关系;它现在是人类、动物以及计算机的逻辑决策科学的一个总称。
博弈论Game theory,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。 最高质量的回归分析Regression Analysis作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此博弈论Game theory作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。
avatest™帮您通过考试
avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试,包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您,创造模拟试题,提供所有的问题例子,以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试,我们都能帮助您!
在不断发展的过程中,avatest™如今已经成长为论文代写,留学生作业代写服务行业的翘楚和国际领先的教育集团。全体成员以诚信为圆心,以专业为半径,以贴心的服务时刻陪伴着您, 用专业的力量帮助国外学子取得学业上的成功。
•最快12小时交付
•200+ 英语母语导师
•70分以下全额退款
想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。
我们在经济Economy代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的经济Economy代写服务。我们的专家在博弈论Game theory代写方面经验极为丰富,各种博弈论Game theory相关的作业也就用不着 说。
经济代写|博弈论代考Game theory代写|An Asymmetric Cooperative Game
In this asymmetric game, it will be assumed that the two coastal states, players 1 and 2 , are identical in all respects, except with regards to fishing effort costs, which we will denote by $c_1$ and $c_2$, respectively. It shall be assumed that $c_1<c_2$. If we return to Chap. 3, we will be reminded, given our model, that for any level of $X$ we shall have $c_1(X)<c_2(X)$, which in turn implies that, in contrast to the symmetric case, the perception of the optimal level of $X$ will differ between 1 and 2 . We shall have $X_1^ \cdot 11$
It is not immediately clear that there would be scope for cooperation that the Core of a potential cooperative game would in fact be other than empty. We know from Chap. 3 that, if players 1 and 2 refused to cooperate, there would be three possibilities, namely, $X_1^=X_2^{O A}$ and $X_1^*>X_2^{O A}$. If either of the first two possibilities were to occur, there would be no basis for cooperation. ${ }^{12}$
Let it be supposed that the third possibility, $X_1^*>X_2^{O A}$, occurs. It is by far the most likely of the three. Now, there is clearly scope for cooperation.
One can see at once that side payments could play a role. Indeed, if side payments were feasible, global harvesting cost minimization, and thus global resource rent maximization would demand that all of the harvesting of the resource should be done by player 1 . In such circumstances, one could think of player 2 importing the harvesting services of player 1 . By assumption, however, players 1 and 2 are not prepared to contemplate side payments. Let us see what can be done.
In this asymmetric game without side payments, the payoff to player 1 will depend upon both player 1’s share of the harvest through time and upon the resource management policy through time that is adopted. There is no assurance whatsoever that the resource management policy adopted will be the one that player 1 deems to be the optimum. What applies to player 1 , applies with equal force to player 2.
In following the lead of Hnyilicza and Pindyck (1976), we first look at harvest shares. ${ }^{13}$ Let us denote 1’s harvest share as $\alpha$, and 2’s share simply as $(1-\alpha)$. There is no necessary reason why these shares should be constant through time. Both the cases of $\alpha$ being constant over time and that of $\alpha=\alpha(t)$ will be considered.
With respect to the first step, let us start with the case of $\alpha$ being constant over time. We then, in effect, have a two stage game. Stage one, determine $\alpha$; stage two determine the resource management policy through time.
As for stage one, what we can say right off is that with $\alpha$ constant through time, it is obvious that $0<\alpha<1$, if the individual rationality constraints are to be satisfied. Beyond this, we will simplify further by looking at the real world. In the real world, the determination of $\alpha$ is typically done without excessive negotiation, being usually done on the basis of some formula such as harvesting histories or zonal attachment-the amount of the resource to be found in EEZ ${ }_1$ and $E E Z_2$, respectively. ${ }^{14}$
经济代写|博弈论代考Game theory代写|Two-Player Cooperative Fishery Games with Side Payments
In examining two-player cooperative fishery games with side payments, we continue with the specific fishery model from Sect. 4.2, but now assume that the players overcome their objections to side payments. With side payments allowed, the objective becomes that of maximizing the global net economic returns from the fishery through time, and then bargaining over the division of these net economic returns between 1 and 2 .
With regards to the symmetric cooperative game, nothing changes. With regards to the asymmetric cooperative game (Sect. 4.2.2) a great deal changes. Return to Eq. (4.6). Maximizing the global returns from the fishery means giving equal weight to $\mathrm{PV}1$ and $\mathrm{PV}_2$ (set $\beta=1 / 2$ ), and then “letting the chips fall where they may”. In so doing, there are no difficulties in allowing $\alpha$ to be function of time-to the contrary. Part of “letting the chips fall where they may” involves optimizing with respect to $\alpha(t){ }^{24}$ As Munro (1979) demonstrates, this drives us to the not unexpected conclusion that the optimal $\alpha(t)$ is $\alpha(t)=1$, for all $t, 0{\text {comp }}^* \equiv X_1^*$. 2’s harvesting costs are simply irrelevant. 1 , and 1 alone, determines the optimal resource management policy.
Two comments are immediately required, both obvious. The first is that this is clearly optimal, if one’s objective is to maximize the net economic returns from the fishery through time. If the 2 fleet does any of the harvesting, the net economic returns from the fishery will not be maximized. The second is that the policy is feasible, if and only if side payments can be employed.
In Chap. 1, reference was made to the Compensation Principle. The Principle states that where there are differences in management objectives between/among the players, it is all but inevitable that one player places a higher value on the fishery resource than does (do) the other(s). Optimal policy calls for allowing that player to dominate the resource management regime, and then compensate the other(s) through the use of side payments. Here one can see the Principle at work. The low-cost player 1 obviously places a higher value on the resource than does high
cost 2 . The optimal policy described brings with it the complete dominance of 1 ‘s management preferences. Indeed, all of the harvesting is undertaken by 1 . 1 then compensates 2 through side payments.
Consider Fig. 4.3, which shows the Pareto Frontier without side payments, and the Pareto Frontier with side payments. The Pareto Frontier with side payment lies everywhere above the Pareto Frontier without side payment. Why? If there are no side payments, 2 must do some of the harvesting for there to be a stable solution to the cooperative game, which in turn means that the global net economic returns from the fishery will not be maximized.
博弈论代写
经济代写|博弈论代考Game theory代写|Asymmetric Game
我们现在将探讨参与者不对称的情况。我们通过假设玩家在所有方面都是相同的来引入不对称性,除了捕鱼努力成本。 双人博亦
不失一般性,假设玩家 1 的捕鱼努力成本低于玩家 2 。我们因此有 $c_1<c_2$. 正如我们所说,我们一直在展示的模型是 GordonSchaefer 模型的动态版本。在那个模型中,捕捞成本对种群大小很敏感, $X(t)$. 正如我们对方程式的讨论所回忆的那样。
(3.51),我们可以将单位收获成本表示为 $c(X)=\frac{c}{q X}$ ,其中收获成本对大小的敏感性 $X$ 很明显。
这意味着,对于任何给定的水平 $X(t)$ ,玩家 1 的单位收获成本将低于玩家 2 的单位收获成本。反过来,这样做的结果是 额外的闭式大括号或缺少开式大括号 $\quad$ 和 $X_1^{O A}<X_2^{O A}$
雞放器的问题 $i$ 可以表示如下:
$$
\max _{E_i(t)} P V_i\left(E_i(t), E_j(t)\right)=\int_0^{+\infty} e^{-\delta t}\left(p q X(t)-c_i\right) E_i(t) \mathrm{d} t \text { s.t. } \frac{\mathrm{d} X}{\mathrm{~d} t}=F(X(t))-q E_i(t) X(t)-q E_j(t) X(t) X(0)=X_0, X(t) \geq 00 \leq E_i(t) \leq E^{\max }
$$
经济代写|博弈论代考Game theory代写|Comparison of Static and Dynamic Games
本章介绍的两个经典游戏已被用于模拟不同背景下的渔业。静态博弈通过关注稳态、可持续收益、收益,比动态博弈简单得多。出于这个原因,静态博弈在理论研究中得到广泛应用,尤其是在与联盟形成相结合时,如第 2 章中所示。5 和 6。动态博弈的优势在于允许捕捞努力量通过反馈策略随时间变化,其中捕捞努力量取决于库存水平。因此,动态博弈通常在实证应用中更受欢迎。
两场比赛的结果如何比较?两者都预测不合作将产生次优结果,合作确实很重要。两者都预测不对称会减轻不合作的影响,并且在某些情况下会导致最佳状态,即效率更高的参与者将效率较低的参与者赶出渔业。然而,动态博弈的结果比静态博弈的结果更具戏剧性。这在对称博弈的情况下最为明显。
任何理论、任何模型的检验都取决于其预测能力。在渔业资源快速增长的情况下,静态模型很可能发挥作用。在第一章 2、以秘鲁和智利共享鳀鱼资源为例,双人非合作博弈。结果显然是次优的,但并不是灾难性的——静态游戏类型的结果。该资源是一种增长非常快的资源。接下来的案例研究将针对一个增长非常缓慢的资源。在本案例研究中,可以看出动态对称非合作博弈的预测非常出色。
经济代写|博弈论代考Game theory代写 请认准exambang™. exambang™为您的留学生涯保驾护航。
在当今世界,学生正面临着越来越多的期待,他们需要在学术上表现优异,所以压力巨大。
avatest.org 为您提供可靠及专业的论文代写服务以便帮助您完成您学术上的需求,让您重新掌握您的人生。我们将尽力给您提供完美的论文,并且保证质量以及准时交稿。除了承诺的奉献精神,我们的专业写手、研究人员和校对员都经过非常严格的招聘流程。所有写手都必须证明自己的分析和沟通能力以及英文水平,并通过由我们的资深研究人员和校对员组织的面试。
其中代写论文大多数都能达到A,B 的成绩, 从而实现了零失败的目标。
这足以证明我们的实力。选择我们绝对不会让您后悔,选择我们是您最明智的选择!
微观经济学代写
微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。
线性代数代写
线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。
博弈论代写
现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。
微积分代写
微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。
它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。
计量经济学代写
什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。
根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。
MATLAB代写
MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习和应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。