Posted on Categories:Measure Theory and Fourier Analysis, 傅里叶分析, 数学代写, 测度论和傅里叶分析

# 数学代写|傅里叶分析代写Fourier Analysis代考|CS660 Let $C$ be the positively oriented ellipse $3 x^2+y^2=9$.

avatest™

## avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试，包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您，创造模拟试题，提供所有的问题例子，以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试，我们都能帮助您！

•最快12小时交付

•200+ 英语母语导师

•70分以下全额退款

## 数学代写|傅里叶分析代写Fourier Analysis代考|Let $C$ be the positively oriented ellipse $3 x^2+y^2=9$.

1. Let $C$ be the positively oriented ellipse $3 x^2+y^2=9$. Define
$$F\left(z_0\right)=\int_C \frac{z^2+2 z}{z-z_0} d z$$
Find $F(2 i)$ and $F(2)$. [Hint: Sketch the ellipse in the complex plane. Use the Cauchy Integral Theorem with an appropriate $f(z)$, or Cauchy’s Theorem if $z_0$ is outside the contour.]

Cauchy’s Integral Theorem gives the value of a function at a point using
$$f\left(z_0\right)=\frac{1}{2 \pi i} \oint_C \frac{f(z)}{z-z_0} d z$$
provided $f(z)$ is analytic inside and on $C$ and $z_0$ is inside the region bounded by the contour. However, if $z_0$ is outside the region and not on $C$, then $\frac{f(z)}{z-z_0}$ is analytic inside and on C. In that case, the integral vanishes due to Cauchy’s Theorem.

For this problem the contour is the ellipse in Figure 4.10. The ellipse equation is easily rewritten as
$$\frac{x^2}{3}+\frac{y^2}{9}=1$$

## 数学代写|傅里叶分析代写Fourier Analysis代考|Find series representations for all indicated regions

In this problem we employ the geometric series
$$\sum_{n=0}^{\infty} x^n=1+x+x^2+\cdots=\frac{1}{1-x^{\prime}}, \quad|x|<1$$ for small $x$ expansions and \begin{aligned} \sum_{n=0}^{\infty}\left(\frac{1}{x}\right)^n & =1+\frac{1}{x}+\frac{1}{x^2}+\cdots \\ & =\frac{1}{1-\frac{1}{x}}, \quad\left|\frac{1}{x}\right|<1, \quad \text { or }|x|>1 . \end{aligned}
a. $f(z)=\frac{z}{z-1},|z|<1,|z|>1$.
The small $z$ expansion is obtained by rewriting the rational function so that one can employ the above geometric series.
\begin{aligned} \frac{z}{z-1} & =-z \frac{1}{1-z} \ & =-z\left(1+z+z^2+\cdots\right) \ & =-\sum_{n=1}^{\infty} z^n, \quad|z|<1 \end{aligned} For the large $z$ expansion, one needs to rewrite the rational function as a function of $1 / z$. \begin{aligned} \frac{z}{z-1} & =\frac{1}{1-\frac{1}{z}} \\ & =\sum_{n=0}^{\infty}\left(\frac{1}{z}\right)^n,|z|>1 \end{aligned}

## 数学代写|傅里叶分析代写Fourier Analysis代考|Let $C$ 是正向 椭圆 $3 x^2+y^2=9$.

1. 让 $C$ 是正向椭圆 $3 x^2+y^2=9$. 定义
$$F\left(z_0\right)=\int_C \frac{z^2+2 z}{z-z_0} d z$$
寻找 $F(2 i)$ 和 $F(2)$. [提示: 在复平面上画出椭圆。使用 Cauchy 积分定理和适当的 $f(z)$ ，或 柯西定理，如果 $z_0$ 在轮廓之外。]
柯西积分定理给出函数在一个点的值，使用
$$f\left(z_0\right)=\frac{1}{2 \pi i} \oint_C \frac{f(z)}{z-z_0} d z$$
假如 $f(z)$ 内外都是分析性的 $C$ 和 $z_0$ 位于轮廓所包围的区域内。然而，如果 $z_0$ 在区域之外并且不在 $C$ ，然后 $\frac{f(z)}{z-z 0}$ 在 C 内和 C 上都是解析的。在这种情况下，由于柯西定理，积分消失了。
对于这个问题，轮廓是图 $4.10$ 中的椭圆。椭圆方程很容易改写为
$$\frac{x^2}{3}+\frac{y^2}{9}=1$$

## 数学代写|傅里叶分析代写Fourier Analysis代考|Find series representations for all indicated regions

$$\sum_{n=0}^{\infty} x^n=1+x+x^2+\cdots=\frac{1}{1-x^{\prime}}, \quad|x|<1$$ 对于小 $x$ 扩展和 \begin{aligned} \sum_{n=0}^{\infty}\left(\frac{1}{x}\right)^n & =1+\frac{1}{x}+\frac{1}{x^2}+\cdots \\ & =\frac{1}{1-\frac{1}{x}}, \quad\left|\frac{1}{x}\right|<1, \quad \text { or }|x|>1 . \end{aligned}
A。 $f(z)=\frac{z}{z-1},|z|<1,|z|>1$.

$$\frac{z}{z-1}=-z \frac{1}{1-z} \quad=-z\left(1+z+z^2+\cdots\right)=-\sum_{n=1}^{\infty} z^n, \quad|z|<1$$ 对于大 $z$ 扩展，需要将有理函数重写为函数 $1 / z$. \begin{aligned} \frac{z}{z-1} & =\frac{1}{1-\frac{1}{z}} \\ & =\sum_{n=0}^{\infty}\left(\frac{1}{z}\right)^n,|z|>1 \end{aligned}

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。