Posted on Categories:数学代写, 数学建模

# 数学代写|数学建模代写Mathematical Modeling代考|MATH4413 “Flow” and Modelling

avatest™

## avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试，包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您，创造模拟试题，提供所有的问题例子，以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试，我们都能帮助您！

•最快12小时交付

•200+ 英语母语导师

•70分以下全额退款

## 数学代写|数学建模代写Mathematical Modeling代考|“Flow” and Modelling

Parhizgar and Liljedahl (chapter “Chapter 10: Teaching Modelling Problems and Its Effects on Students’ Engagement and Attitude Toward Mathematics”) investigated the impact of flow (specifically, engagement) and attitude in three types of problems, namely, modelling problems, word problems, and basic exercises. The authors also investigated the effects of teacher-centred and student-centred approaches on students’ attitude towards and engagement in each of these problems. The results of their questionnaires showed some surprising, and not so surprising results. With respect to the unexpected findings, it was the word problems that yielded the highest engagement before and after the intervention. The modelling problems were seen by the students as being too difficult, suggesting an imbalance between challenge and skill. Not surprisingly, the student-centred approach had a greater impact on students’ attitude towards modelling problems, with students appreciating the group work involved. What is rather troubling in Parhizgar and Liljedahl’s conclusions is the recommendation that students be “sufficiently taught how to solve real-world problems, especially how to do cycle modelling” (p. 251) so they can engage effectively with modelling problems. I question this advice, which appears to contradict the very nature and purpose of modelling problems. One of the many benefits of engaging students in these problems is fostering their independent application of mathematics knowledge and understanding to the solution of authentic problems that allow for various approaches and solutions. With their “low floor” and “high ceiling” features (English 2017, Gadanidis et al. 2018; Papert 1980) modelling problems are designed to be within reach of all students, a point to which I return. Furthermore, by implementing sequences of related modelling problems (Doerr and English 2003), students can apply and extend their learning to new situations without needing to be taught how to do so. One thus has to question the design of some of the problems in Parhizgar and Liljedahl’s study.

## 数学代写|数学建模代写Mathematical Modeling代考|Balancing Context and Model Generation

In illustrating the dynamic ways in which flow occurred during small group modelling involving designing a new school, Liu and Liljedahl highlight the important role of contextualized knowledge in such problems. In the interesting excerpts of students solving the problem, it was evident that the context was, at times, overshadowing their model generation. Although Liu and Liljedahl do not mention this point, it is worth commenting that, while a meaningful context is a core feature of modelling problems, there is the issue of another imbalance occurring within the dynamics of flow – that of contextual features versus model generation. It could be argued that with increased awareness and knowledge of contextual features comes a concomitant awareness of the need to balance context and modelling. On the other hand, insufficient contextual knowledge or experience can hinder students’ solution processes as was the case in Liu and Liljedahl’s problem where the students lacked driver experience of manoeuvring cars in parking lots. Such imbalances between context and modelling occur often in our lives. For example, many of us have experienced frustrations with architects (and vice versa) when our desires for the “perfect” home context need to be tempered with a consideration of core structural features required in the architect’s house design.

## 数学代写|数学建模代写Mathematical Modeling代考|“Flow” and Modelling

Parhizgar 和 Liljedahl（“第 10 章：教学建模问题及其对学生参与度和数学态度的影响”一章）调查了心流（特别是参与度）和态度对三类问题（即建模问题、文字问题）的影响, 和基本练习。作者还调查了以教师为中心和以学生为中心的方法对学生对这些问题的态度和参与度的影响。他们的问卷调查结果显示出一些令人惊讶和不那么令人惊讶的结果。关于意想不到的发现，干预前后参与度最高的是“问题”一词。学生们认为建模问题太难了，这表明挑战与技能之间存在不平衡。不出所料，以学生为中心的方法对学生对建模问题的态度产生了更大的影响，学生欣赏所涉及的小组工作。Parhizgar 和 Liljedahl 的结论中相当令人不安的是建议“充分教导学生如何解决现实世界的问题，尤其是如何进行循环建模”（第 251 页），以便他们能够有效地处理建模问题。我质疑这个建议，它似乎与建模问题的本质和目的相矛盾。让学生参与这些问题的众多好处之一是培养他们独立应用数学知识和理解解决允许各种方法和解决方案的真实问题。具有“低地板”和“高天花板”的特点（English 2017，Gadanidis et al. 2018；Papert 1980）建模问题旨在让所有学生都能够理解，这一点我要回过头来。此外，通过实施相关建模问题的序列（Doerr 和 English 2003），学生可以将他们的学习应用和扩展到新的情况，而无需教他们如何这样做。因此，人们不得不质疑 Parhizgar 和 Liljedahl 研究中某些问题的设计。

## 数学代写|数学建模代写Mathematical Modeling代考|Balancing Context and Model Generation

Liu 和 Liljedahl 在说明涉及设计新学校的小组建模过程中发生心流的动态方式时，强调了情境化知识在此类问题中的重要作用。在学生解决问题的有趣摘录中，很明显，上下文有时会掩盖他们的模型生成。尽管 Liu 和 Liljedahl 没有提到这一点，但值得一提的是，虽然有意义的上下文是建模问题的核心特征，但在流的动态中还存在另一个不平衡的问题——上下文特征与模型生成的不平衡。可以说，随着对上下文特征的认识和知识的增加，随之而来的是对平衡上下文和建模的必要性的认识。另一方面，背景知识或经验不足会阻碍学生的解决过程，就像 Liu 和 Liljedahl 的问题一样，学生缺乏在停车场驾驶汽车的驾驶员经验。背景和建模之间的这种不平衡经常发生在我们的生活中。例如，当我们对“完美”家庭环境的渴望需要考虑建筑师房屋设计所需的核心结构特征时，我们中的许多人都对建筑师感到失望（反之亦然）。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。