Posted on Categories:基础编程, 计算机代写

计算机代写|基础编程代写Fundamental of Programming代考|KIT101 Deep Learning

如果你也在 怎样代写基础编程Fundamental of Programming KIT101这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。基础编程Fundamental of Programming是一个过程,从一个计算问题的原始表述到可执行的计算机程序。编程涉及的活动包括:分析、发展理解、生成算法、验证算法的要求,包括其正确性和资源消耗,以及在目标编程语言中实现(通常称为编码)。

基础编程Fundamental of Programming涉及的任务包括:分析、生成算法、剖析算法的准确性和资源消耗,以及算法的实现(通常用选定的编程语言,通常称为编码)。程序的源代码是用程序员可以理解的一种或多种语言编写的,而不是由中央处理单元直接执行的机器代码。编程的目的是找到一个指令序列,在计算机上自动执行一项任务(可以像操作系统一样复杂),通常是为了解决一个特定的问题。因此,熟练的编程通常需要几个不同学科的专业知识,包括应用领域的知识、专门的算法和形式逻辑。

基础编程Fundamental of Programming代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。 最高质量的基础编程Fundamental of Programming作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此基础编程Fundamental of Programming作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试,包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您,创造模拟试题,提供所有的问题例子,以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试,我们都能帮助您!

在不断发展的过程中,avatest™如今已经成长为论文代写,留学生作业代写服务行业的翘楚和国际领先的教育集团。全体成员以诚信为圆心,以专业为半径,以贴心的服务时刻陪伴着您, 用专业的力量帮助国外学子取得学业上的成功。

•最快12小时交付 

•200+ 英语母语导师 

•70分以下全额退款

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

我们在计算机Quantum computer代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的计算机Quantum computer代写服务。我们的专家在C/C++ 编程代写方面经验极为丰富,各种C/C++ 编程相关的作业也就用不着 说。

计算机代写|基础编程代写Fundamental of Programming代考|KIT101 Deep Learning

计算机代写|基础编程代写Fundamental of Programming代考|Deep Learning

Neural networks are one of the few machine learning algorithms that directly support higher dimensional data, such as vector data or even higher-dimensional data representing images and videos [8]. Additionally, deep neural networks are often advertised as machine learning technique that eliminates any manual feature engineering, because feature engineering is already performed as part of the network and it’s many layers. As a result, deep neural networks offers some powerful features that are not established well in GP yet. However, neural network lack the simplicity and interpretability of symbolic models, therefore, the knowledge on how features were extracted from the higher dimensional data, and how those effect a model’s output is very difficult to assess.

There is an also interesting technical intersection between GP and neural networks regarding the representation of models. Most neural networks libraries, such as TensorFlow ${ }^3$ or PyTorch, ${ }^4$ use directed acyclic graphs of tensor operations for representing a neural network, similar to the graph representation of Cartesian GP [16]. Such tensor-graphs could also be used to represent symbolic models that contain scalar and vector data. The additional benefit of representing models as directed graphs is it’s ability to automatically calculate the gradient of such a graph via automatic differentiation [9], which is essential for training neural networks. Being able to calculate the gradient of a symbolic model also allows optimizing the numerical constants of a given symbolic model via least squares, which is more efficient than tuning the coefficients via GP [13].

计算机代写|基础编程代写Fundamental of Programming代考|Grammar-Based Vectorial Genetic Programming

In this section, we present our method that extends classical tree-based genetic programming for symbolic regression, to also support vector variables along scalar variables. Our method combines the vectorial GP approach described in Sect. 2.2.1 and a grammar-based approach for symbolic regression described in Sect. 2.2.2. Fortunately, both vectorial GP and grammar-based GP can be implemented independently since they affect independent aspects of GP.

On the one hand, extending GP to be able to handle vector variables only affects the interpretation module of GP, which is responsible for evaluating a tree-model, by applying operations defined in the sub-trees onto its argument and propagating the results bottom-up until it reaches the root of the tree. On the other hand, the grammar limits the search space by restricting random creation, crossover and mutator to only create models that adhere to the specified grammar. Therefore, while the interpretation module should be as powerful as possible and allow evaluation of all valid models, the grammar is responsible of limiting the search space to models that are sensible and the users are interested in.

计算机代写|基础编程代写Fundamental of Programming代考|KIT101 Deep Learning

基础编程代写

计算机代写|基础编程代写Fundamental of Programming代考|Deep Learning

神经网络是为数不多的直接支持高维数据的机器学习算法之一,例如矢量数据甚至代表图像和视频的高维数据 [8]。此外,深度神经网络经常被宣传为机器学习技术,可以消除任何手动特征工程,因为特征工程已经作为网络的一部分执行,并且它有很多层。因此,深度神经网络提供了一些在 GP 中尚未建立的强大功能。然而,神经网络缺乏符号模型的简单性和可解释性,因此,关于如何从高维数据中提取特征以及这些特征如何影响模型输出的知识很难评估。

在模型表示方面,GP 和神经网络之间还有一个有趣的技术交叉点。大多数神经网络库,例如 TensorFlow3或者 PyTorch,4使用张量运算的有向无环图来表示神经网络,类似于笛卡尔 GP [16] 的图表示。这样的张量图也可以用来表示包含标量和矢量数据的符号模型。将模型表示为有向图的额外好处是它能够通过自动微分 [9] 自动计算此类图的梯度,这对于训练神经网络至关重要。能够计算符号模型的梯度还允许通过最小二乘法优化给定符号模型的数值常数,这比通过 GP [13] 调整系数更有效。

计算机代写|基础编程代写Fundamental of Programming代考|Grammar-Based Vectorial Genetic Programming

在本节中,我们介绍了我们的方法,该方法扩展了用于符号回归的经典的基于树的遗传编程,以支持沿标量变量的向量变量。我们的方法结合了第 1 节中描述的矢量 GP 方法。2.2.1 和 Sect. 中描述的基于语法的符号回归方法。2.2.2. 幸运的是,矢量 GP 和基于语法的 GP 都可以独立实现,因为它们影响 GP 的独立方面。

一方面,扩展 GP 使其能够处理向量变量只会影响 GP 的解释模块,该模块负责评估树模型,通过将子树中定义的操作应用于其参数并将结果传播到底部-直到它到达树的根。另一方面,语法通过限制随机创建、交叉和变异器来限制搜索空间,以仅创建符合指定语法的模型。因此,虽然解释模块应该尽可能强大并允许评估所有有效模型,但语法负责将搜索空间限制为合理且用户感兴趣的模型。

计算机代写|基础编程代写Fundamental of Programming代考

计算机代写|基础编程代写Fundamental of Programming代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Write a Reply or Comment

您的电子邮箱地址不会被公开。 必填项已用 * 标注