Posted on Categories:Microeconomics, 微观经济学, 经济代写

经济代写|微观经济学代考Microeconomics代写|The satisfaction principle

如果你也在 怎样代写微观经济学Microeconomics 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。微观经济学Microeconomics是主流经济学的一个分支,研究个人和公司在做出有关稀缺资源分配的决策时的行为以及这些个人和公司之间的互动。微观经济学侧重于研究单个市场、部门或行业,而不是宏观经济学所研究的整个国民经济。

微观经济学Microeconomic的一个目标是分析在商品和服务之间建立相对价格的市场机制,并在各种用途之间分配有限资源。微观经济学显示了自由市场导致理想分配的条件。它还分析了市场失灵,即市场未能产生有效的结果。微观经济学关注公司和个人,而宏观经济学则关注经济活动的总和,处理增长、通货膨胀和失业问题以及与这些问题有关的国家政策。微观经济学还处理经济政策(如改变税收水平)对微观经济行为的影响,从而对经济的上述方面产生影响。

微观经济学Microeconomic免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。 最高质量的回归分析Regression Analysis作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此博弈论Game theory作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试,包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您,创造模拟试题,提供所有的问题例子,以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试,我们都能帮助您!

在不断发展的过程中,avatest™如今已经成长为论文代写,留学生作业代写服务行业的翘楚和国际领先的教育集团。全体成员以诚信为圆心,以专业为半径,以贴心的服务时刻陪伴着您, 用专业的力量帮助国外学子取得学业上的成功。

•最快12小时交付 

•200+ 英语母语导师 

•70分以下全额退款

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

我们在经济Economy代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的经济Economy代写服务。我们的专家在微观经济学Microeconomic代写方面经验极为丰富,各种微观经济学Microeconomic相关的作业也就用不着 说。

经济代写|微观经济学代考Microeconomics代写|The satisfaction principle

经济代写|微观经济学代考Microeconomics代写|The satisfaction principle

The satisfaction principle is the only principle common to both evolutionist and classical game theory. It requires that, in addition to the set of players, the set of strategies available to each of them, one specifies for each player a utility function, which defines his payoff at each issue of the game (which may be repeated). It specifies the set of players, the set of strategies available to each of them as well as his utility function, i. e. his payoff at each issue of the stage game. The opportunities and preferences of the players are supposed to be given (to the modeller) at the beginning of the game and stay unchanged.

The standard illustration, systematically used in the future, is the “technology game”. It represents the coordination problem faced by two firms, 1 and 2 , which have to choose among two technologies, A and $\mathrm{B}$. The technology B, in contrast to the technology A, is a state-of- the-art- tech-nology: both firms, if they both choose B, better perform -they both get 4 than if they both choose A -they both get 2. When one firm uses technology A and the other technology B, the first firm gets $b$ and the second $c$, these parameters being further specified. Note that this game is symmetric whatever the values assigned to $b$ and $c$ (firms A and B have the same strategy set and achieve the same payoffs in symmetric issues). The corresponding game matrix, a symmetric matrix, is the following:

In a first variant of the technology game, looking like Rousseau’s stag hunt game, one states $b=1$ and $c=0$. It means that the inferior technology $\mathrm{A}$, better mastered than technology B, can be used alone (with a reduced payoff). Conversely, the superior technology $\mathrm{B}$, which needs to develop, is bad when used alone. In this variant, the technology $A$ is less risky than technology B, in that it yields a payoff which less depends on the choice of the other firm (the payoff is between 1 and 2 for technology A, in contrast to 0 and 4 for technology B). The corresponding matrix is the following (variant 1):

The stage game may be isolated or part of a bigger game, which is potentially much more complex. A stage game is isolated when the payoffs of the confronted players at a given period are independent of the behavior of all other players, which potentially play the same game, at the present (and preceding) periods. Some degree of isolation is necessary for a game to be studied in an evolutionist way; more precisely, in case of lack of the isolation assumption, it is possible to address the game only if the stage game smoothly changes from one period to the other, due to the evolution of the global game, whose impact is felt only progressively. So the technology game is perhaps not necessarily an isolated game: the prices of both technologies A and B, and therefore the benefits achieved with each of them, may depend on the behavior of other firms having to choose among the technologies A and B (and possibly other technologies), as well as on the behavior of consumers supposed to buy the product produced by means of the different technologies.

经济代写|微观经济学代考Microeconomics代写|The confrontation principle

Players play repeatedly, a finite or infinite number of times, a $n$-player stage game. The stage game is a non cooperative game in the usual sense, in normal or extensive form. The payoffs of the players are aggregated thanks to some discount rate (see chapter 1).

The $n$-player stage game is supposed to be played by $n$ players or, more usually in evolutionist games, by $n$ populations of agents, each agent of the population $i$ playing the role of player i. In each period, several $n$-uplets of individuals are randomly drawn from the $n$ populations (or subsets of these $n$ populations), one agent from each population, and each $n$-uplet of agents plays the game. The interactions may be more or less numerous at each period. On one side, a single $n$-uplet is constituted in a random way. On the other side, all possible $n$-uplets are formed. In the technology game, if each firm is represented by an equal number of agents (each agent having a given technology), each agent of one population may meet one firm of the other population or many combinations can be sorted out.

A usual distinction about meetings concerns the “multi-population” or the “mono-population” approach. The multi-population approach is available for any game and corresponds to differenciated players. Agents from a given population meet agents from the other populations. By contrast, the mono-population approach is reserved to symmetric games when players are considered as interchangeable. Agents form a unique population and meet any agents from that population. For a symmetric game, the two approaches are then available while only the first is available for non symmetric games. For example, one may study the technology game with two populations of agents, namely if the two firms are not located in the same place and if the game can only confront firms not located in a same place, but also with only one population of agents if the firms are interchangeable.

A second distinction about meetings makes a difference between “global interaction” and “local interaction”. In a local interaction model, the agents which an agent may meet in a given period belong to subsets of the other population(s). These subsets figure agent’s local “interaction neighborhood”. For example, in some traditional evolutionist games, agents are located on a one or two dimensional space, like a circle or a torus, and the interaction neighborhood spontaneously includes agents who are physically near them. By contrast, in a global interaction model, each agent may meet any agent in the opponent population(s). Global interaction is just a special case of local interaction (the size of the subsets is the cardinality of the populations). For instance, the technology game may be played by firms situated on a circle and a firm meets only the firms at its right and left.

经济代写|微观经济学代考Microeconomics代写|The satisfaction principle

微观经济学代写

经济代写|微观经济学代考Microeconomics代写|The satisfaction principle

满足原则是进化论和经典博弈论唯一共同的原则。它要求,除了一组参与者,一组可供他们每个人使用的策略之外,还需要为每个参与者指定一个效用函数,该函数定义了他在游戏的每个问题上的收益(可以重复)。它指定了玩家集合、每个玩家可用的策略集合以及他的效用函数,即他在阶段游戏的每个问题上的收益。玩家的机会和偏好应该在游戏开始时(给建模者)提供并保持不变。

末来系统地使用的标准揷图是“技术游戏”。它表示两家公司 1 和 2 面临的协调问题,它们必须在两种技术 $A$ 和 B. 与技术 $A$ 相比,技术 $B$ 是最先进的技术: 两家公司,如果他们都选择 $B$ ,则表现更好 – 他们都得到 4 比如 果他们都选择 $A$ – 他们都得 2. 当一家公司使用技术 $A$ 而另一家公司使用技术 $B$ 时,第一家公司得到 $b$ 第二个 $C$ ,这些参数被进一步指定。请注意,无论分配给什么值,这个游戏都是对称的 $b$ 和 $c$ (公司 $\mathrm{A}$ 和 $\mathrm{B}$ 具有相同的策 略集并在对称问题上获得相同的收益) 。对应的博恋矩阵是一个对称矩阵,如下所示:
在技术游戏的第一个变体中,看起来像卢梭的猎鹿游戏,有人说 $b=1$ 和 $c=0$. 就是技术差的意思 $\mathrm{A}$ ,比技术 $B$ 掌握得更好,可以单独使用 (收益减少) 。反之,先进的技术 $B$ ,需要开发,单独使用是不好的。在这个变体 中,技术 $A$ 比技术 $\mathrm{B}$ 风险更小,因为它产生的收益较少取决于另一家公司的选择 (技术 $\mathrm{A}$ 的收益在 1 和 2 之 间,而技术 $B$ 的收益在 0 和 4 之间) 。相应的矩阵如下(变体 1 ) :
舞台游戏可能是孤立的,也可能是更大游戏的一部分,这可能要复杂得多。当在给定时期内对抗参与者的收益 独立于当前 (和之前) 时期可能玩相同游戏的所有其他参与者的行为时,阶段博亦是孤立的。要以进化论的方 式研究游戏,一定程度的隔离是必要的;更准确地说,在缺乏隔离假设的情况下,只有当阶段博亦从一个时期 平稳地变化到另一个时期时,才有可能解快博恋问题,这是由于全球博亦的演变,其影响只能逐渐感受到。因 此,技术游戏可能不一定是孤立的游戏:技术 $A$ 和 $B$ 的价格,以及它们各自带来的收益,

经济代写|微观经济学代考Microeconomics代写|The confrontation principle

玩家重复玩,有限次或无限次,an-玩家阶段游戏。阶段博帟是通常意义上的非合作博恋,其形式 是正常的或广泛的。由于某些贴现率(见第 1 章),参与者的收益被汇总。
这 $n$-玩家阶段游戏应该由 $n$ 玩家,或者更常见的是在进化论游戏中,通过 $n$ 代理人群体,人口中的每 个代理人 $i$ 扮演玩家 $\mathrm{i}$ 的角色。每个时期都有几个 $n-$ 个体的 uplets 是随机抽取的 $n$ 人口(或这些人 口的子集 $n$ 种群),每个种群中的一个代理人,以及每个 $n$-代理人玩游戏。每个时期的相互作用可 能更多或更少。一方面,单 $n$-uplet 以随机方式构成。另一边,一切皆有可能n-形成了连体。在技 术博亦中,如果每个公司由相同数量的代理人 (每个代理人都拥有给定的技术) 代表,则一个群体中 的每个代理人可能会遇到另一个群体中的一个公司,或者可以挑选出许多组合。

会议的一个通常区别是“多人群”或“单一人群”方法。多群体方法可用于任何游戏,并对应于不同的玩家。来自给定种群的代理人会遇到来自其他种群的代理人。相比之下,当参与者被认为是可互换的时,单一群体方法被保留用于对称游戏。代理人形成一个独特的群体,并会见来自该群体的任何代理人。对于对称博弈,这两种方法都可用,而对于非对称博弈,只有第一种方法可用。例如,可以研究两个代理群体的技术博弈,即如果两家公司不在同一个地方,并且如果博弈只能面对不在同一个地方的公司,

关于会议的第二个区别是“全球互动”和“本地互动”之间的区别。在本地交互模型中,代理人在给定时间段内可能遇到的代理人属于其他人群的子集。这些子集表示代理的本地“交互邻域”。例如,在一些传统的进化论游戏中,代理位于一维或二维空间,如圆或环面,并且交互邻域自发地包括物理上靠近它们的代理。相比之下,在全局交互模型中,每个代理可能会遇到对手群体中的任何代理。全局交互只是局部交互的一个特例(子集的大小是种群的基数)。

经济代写|微观经济学代考Microeconomics代写

经济代写|微观经济学代考Microeconomics代写 请认准exambang™. exambang™为您的留学生涯保驾护航。

在当今世界,学生正面临着越来越多的期待,他们需要在学术上表现优异,所以压力巨大。

avatest.org 为您提供可靠及专业的论文代写服务以便帮助您完成您学术上的需求,让您重新掌握您的人生。我们将尽力给您提供完美的论文,并且保证质量以及准时交稿。除了承诺的奉献精神,我们的专业写手、研究人员和校对员都经过非常严格的招聘流程。所有写手都必须证明自己的分析和沟通能力以及英文水平,并通过由我们的资深研究人员和校对员组织的面试。

其中代写论文大多数都能达到A,B 的成绩, 从而实现了零失败的目标。

这足以证明我们的实力。选择我们绝对不会让您后悔,选择我们是您最明智的选择!

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Write a Reply or Comment

您的电子邮箱地址不会被公开。 必填项已用 * 标注