Posted on Categories:General Relativity, 广义相对论, 物理代写

物理代写|广义相对论代写General Relativity代考|Tensor fields

如果你也在 怎样代写广义相对论General Relativity 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。广义相对论General Relativity又称广义相对论和爱因斯坦引力理论,是爱因斯坦在1915年发表的引力几何理论,是目前现代物理学中对引力的描述。广义相对论概括了狭义相对论并完善了牛顿的万有引力定律,将引力统一描述为空间和时间或四维时空的几何属性。特别是,时空的曲率与任何物质和辐射的能量和动量直接相关。这种关系是由爱因斯坦场方程规定的,这是一个二阶偏微分方程系统。

广义相对论General Relativity描述经典引力的牛顿万有引力定律,可以看作是广义相对论对静止质量分布周围几乎平坦的时空几何的预测。然而,广义相对论的一些预言却超出了经典物理学中牛顿的万有引力定律。这些预言涉及时间的流逝、空间的几何、自由落体的运动和光的传播,包括引力时间膨胀、引力透镜、光的引力红移、夏皮罗时间延迟和奇点/黑洞。到目前为止,对广义相对论的所有测试都被证明与该理论一致。广义相对论的时间相关解使我们能够谈论宇宙的历史,并为宇宙学提供了现代框架,从而导致了大爆炸和宇宙微波背景辐射的发现。尽管引入了一些替代理论,广义相对论仍然是与实验数据一致的最简单的理论。然而,广义相对论与量子物理学定律的协调仍然是一个问题,因为缺乏一个自洽的量子引力理论;以及引力如何与三种非引力–强、弱和电磁力统一起来。

广义相对论General Relativity代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。最高质量的广义相对论General Relativity作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此广义相对论General Relativity作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试,包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您,创造模拟试题,提供所有的问题例子,以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试,我们都能帮助您!

在不断发展的过程中,avatest™如今已经成长为论文代写,留学生作业代写服务行业的翘楚和国际领先的教育集团。全体成员以诚信为圆心,以专业为半径,以贴心的服务时刻陪伴着您, 用专业的力量帮助国外学子取得学业上的成功。

•最快12小时交付 

•200+ 英语母语导师 

•70分以下全额退款

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

我们在物理Physical代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的物理Physical代写服务。我们的专家在广义相对论General Relativity代写方面经验极为丰富,各种广义相对论General Relativity相关的作业也就用不着说。

物理代写|广义相对论代写General Relativity代考|Tensor fields

物理代写|广义相对论代写General Relativity代考|Tensor fields

By definition, a ‘tensor’ is a field with some downstairs indices (that transform as in (3.62)) and some upstairs indices (that transform as in $(3.66))$
$\tilde{T}^{a \ldots} b_{\ldots}(\tilde{x})=\frac{\partial \tilde{X}^a}{\partial x^c} \ldots \frac{\partial x^d}{\partial \tilde{X}^b} \ldots \tilde{T}^{c \ldots}{ }{d \ldots}(x(\tilde{x}))$ The metric $g{a b}$ is a tensor: (3.30) is a special case of (3.64).
An equation between tensors is called a tensorial equation. If a tensorial equation holds in one coordinate system, it holds in all coordinate systems, because since the transformation of a tensor is linear, a tensor that vanishes in one coordinate system vanishes in all coordinate systems.

Careful: not all fields with indices are tensors. For instance, the Christoffel symbol $\Gamma_{b c}^a$ is not a tensor. The way it transforms under a change of coordinates can be derived from the definition [do it!] and is not given by (3.64).

A bit of cleaner maths. The definition of vector fields (and tensors) given above (quantities with indices that transform in a certain manner under change of coordinates) is customary in physics textbooks. I have always found it awkward. So, for once I prefer to mention a cleaner definition given by mathematicians.

Intuitively, the tangent space is the space of the ‘directions with length’ at the point. The mathematician’s solution to make this notion precise is to define a (controvariant) vector $v$ at a point $p$ as a derivative operator acting on scalar fields $\varphi(x)$ at $p$, measuring how they change in a certain direction. Its general form in terms of the coordinates $x^a$ is
$$
\left.v \equiv v^a \frac{\partial}{\partial X^a}\right|_{X_p},
$$

where $x_p$ are the coordinates of $p$. The set of these derivative operators at $p$ form a vector space (with coordinates $v^a$ ), which is by definition the tangent space $T_p$ at $p$. The quantities $v^a$ are the components of the vector $v$ in the basis of the vectors $\left.e_{|a|} \equiv \frac{\partial}{\partial X^a}\right|_{X_p}$. The components change under a change of coordinates as
$$
\tilde{V}^a=\frac{\partial \tilde{x}^a}{\partial x^b} v^b
$$
as follows easily from the Leibniz rule [do it!].

物理代写|广义相对论代写General Relativity代考|Covariant derivative

Tensors are important because an equation between tensors true in one coordinate system is true in any other coordinate system. Hence it is a relation that does not depend on a particular coordinate system. Importantly, in general the derivative of a tensor is not a tensor. For instance, the quantity $\partial_a V^b \equiv \frac{\partial V^a}{\partial x^b}$ is not a tensor. This is because the derivative of the transformed tensor includes also the derivative of the Jacobian $\frac{\partial \tilde{X}^a}{\partial X^b}$, which in general is not a constant. However, it turns out that the quantity

$$
D_a v^b \equiv \partial_a v^b+\Gamma_{a c}^b v^c
$$
happens to be a tensor, as an explicit calculation shows [do it!]. This quantity is called the ‘covariant derivative’ of $v^a$. The covariant derivative of a covariant tensor is defined with a minus sign:
$$
D_a w_b \equiv \partial_a w_b-\Gamma_{a b}^c w_c
$$
And the covariant derivative of a tensor with more indices picks one such term for each index. That is, for instance,
$$
D_a w_c^b \equiv \partial_a w_c^b+\Gamma_{a d}^b w_c^d-\Gamma_{a c}^d w_d^b{ }^b
$$
The covariant derivative is a coordinate-independent notion. If a tensor field $T_a^b=D_a V^b$ is the covariant derivative of the vector field $v^a$ in a coordinate system, it is so in any coordinate system. This is not true for a relation like $\partial_a v^b=T_a^b$.

If a vector has a covariant derivative null along a path $\gamma$, namely $\dot{\gamma}^a D_a v^b=0$, the angle between the vector and the tangent to the path remains constant along the path. This follows directly from the fact that this equation does not depend on the coordinates and is true in locally Cartesian coordinates. We say that such a vector is ‘parallel transported’ along the path. This result clarifies the meaning of $\Gamma_{b c}^a$ : it tells us how to parallel transport vectors.

物理代写|广义相对论代写General Relativity代考|Tensor fields

广义相对论代写

物理代写|广义相对论代写General Relativity代考|Tensor fields

根据定义,“张量”是一个具有一些下层指标 (如 (3.62) 中那样变换) 和一些上层指标 (如(3.66)) $\tilde{T}^{a \cdots} b \ldots(\tilde{x})=\frac{\partial \bar{X}^a}{\partial x^c} \ldots \frac{\partial x^d}{\partial \tilde{X}^b} \ldots \tilde{T}^{c \ldots} d \ldots(x(\tilde{x}))$ 公制 $g a b$ 是张量: (3.30) 是 (3.64) 的特例。
张量之间的方程称为张量方程。如果一个张量方程在一个坐标系中成立,那么它在所有坐标系中都成立,因为 张量的变换是线性的,在一个坐标系中为雺的张量在所有坐标系中都为雿。
注意: 并非所有具有索引的字段都是张量。例如,Christoffel 符号 $\Gamma_{b c}^a$ 不是张量。它在坐标变化下的变换方式 可以从定义 [do it!] 中推导出来,而 (3.64) 没有给出。
一些更清晰的数学。上面给出的矢量场 (和张量) 的定义 (具有在坐标变化下以某种方式变换的指数的量) 在 物理教科书中是惯用的。我一直觉得很踃犮。因此,我宁愿提一下数学家给出的更清晰的定义。
直观上,切线空间是该点“有长度的方向”的空间。数学家使这个概念精确的解决方案是定义一个 (自变量) 向 量 $v$ 在某一点 $p$ 作为作用于标量场的导数算子 $\varphi(x)$ 在 $p$ ,测量它们在某个方向上的变化情况。它在坐标方面的一 般形式 $x^a$ 是
$$
\left.v \equiv v^a \frac{\partial}{\partial X^a}\right|{X_p}, $$ 在哪里 $x_p$ 是的坐标 $p$. 这些导数算子的集合在 $p$ 形成一个向量空间 (坐标 $\left.v^a\right)$ ,根据定义是切线空间 $T_p$ 在 $p$. 数量 $v^a$ 是向量的分量 $v$ 在向量的基础上 $\left.e{|a|} \equiv \frac{\partial}{\partial X^a}\right|_{X_p}$ 组件在坐标变化下变化为
$$
\tilde{V}^a=\frac{\partial \tilde{x}^a}{\partial x^b} v^b
$$
根据莱布尼茨规则 [do it!] 很容易得出结论。

物理代写|广义相对论代写General Relativity代考|Covariant derivative

张量很重要,因为在一个坐标系中为真的张量之间的方程在任何其他坐标系中都为真。因此,它是一种不依赖 于特定坐标系的关系。重要的是,通常张量的导数不是张量。例如,数量 $\partial_a V^b \equiv \frac{\partial V^a}{\partial x^b}$ 不是张量。这是因为变 换后的张量的导数还包括雅可比行列式的导数 $\frac{\partial \bar{X}^a}{\partial X^b}$ ,这通常不是一个常数。然而,事实证明数量
$$
D_a v^b \equiv \partial_a v^b+\Gamma_{a c}^b v^c
$$
恰好是一个张量,正如显式计算所示 [do it! ]。这个量被称为“协变导数” $v^a$. 协变张量的协变导数用负号定义:
$$
D_a w_b \equiv \partial_a w_b-\Gamma_{a b}^c w_c
$$
具有更多指标的张量的协变导数为每个指标选择一个这样的项。也就是说,例如,
$$
D_a w_c^b \equiv \partial_a w_c^b+\Gamma_{a d}^b w_c^d-\Gamma_{a c}^d w_d^{b b}
$$
协变导数是一个与坐标无关的概念。如果一个张量场 $T_a^b=D_a V^b$ 是矢量场的协变导数 $v^a$ 在一个坐标系中,在 任何坐标系中都是如此。这对于像这样的关系是不正确的 $\partial_a v^b=T_a^b$. 该方程不依赖于坐标并且在局部笛卡尔坐标中成立的事实。我们说这样的矢量沿路径“平行传输”。这个结果迧 明了 $\Gamma_{b c}^a:$ : 它告诉我们如何并行传输向量。

物理代写|广义相对论代写General Relativity代考

物理代写|广义相对论代写General Relativity代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Write a Reply or Comment

您的电子邮箱地址不会被公开。 必填项已用 * 标注