Posted on Categories:Optimization Theory, 优化理论, 数学代写

数学代写|优化理论代写Optimization Theory代考|Deleting an inequality or equality constraint

如果你也在 怎样代写优化理论Optimization Theory 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。优化理论Optimization Theory是致力于解决优化问题的数学分支。 优化问题是我们想要最小化或最大化函数值的数学函数。 这些类型的问题在计算机科学和应用数学中大量存在。

优化理论Optimization Theory每个优化问题都包含三个组成部分:目标函数、决策变量和约束。 当人们谈论制定优化问题时,它意味着将“现实世界”问题转化为包含这三个组成部分的数学方程和变量。目标函数,通常表示为 f 或 z,反映要最大化或最小化的单个量。交通领域的例子包括“最小化拥堵”、“最大化安全”、“最大化可达性”、“最小化成本”、“最大化路面质量”、“最小化排放”、“最大化收入”等等。

优化理论Optimization Theory代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。最高质量的优化理论Optimization Theory作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此优化理论Optimization Theory作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试,包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您,创造模拟试题,提供所有的问题例子,以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试,我们都能帮助您!

在不断发展的过程中,avatest™如今已经成长为论文代写,留学生作业代写服务行业的翘楚和国际领先的教育集团。全体成员以诚信为圆心,以专业为半径,以贴心的服务时刻陪伴着您, 用专业的力量帮助国外学子取得学业上的成功。

•最快12小时交付 

•200+ 英语母语导师 

•70分以下全额退款

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

我们在数学Mathematics代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在优化理论Optimization Theory代写方面经验极为丰富,各种优化理论Optimization Theory相关的作业也就用不着说。

数学代写|优化理论代写Optimization Theory代考|Deleting an inequality or equality constraint

数学代写|优化理论代写Optimization Theory代考|Deleting an inequality or equality constraint

The approach for deleting a constraint once an optimal solution has been obtained is the same whether it be an inequality or an equality. Accordingly, we will assume that we are deleting an equality constraint.

Suppose that after obtaining an optimal solution, say $\bar{x}$, we decide that a particular constraint $A_k \cdot x=b_k$ needs to be deleted. Even though $\bar{x}$ will be feasible for the modified problem, the deletion of this constraint will reduce the size of the basis and might result in dual infeasibility. To “physically” delete a constraint from the system and update the basis inverse (or factorization) could require significant computational work. It is simpler instead to make the constraint nonbinding, by which we mean that the lefthand side is no longer required to take on the value $b_k$.

We can make the $k$-th constraint nonbinding by introducing the free variable $x_{n+1}$ (in the $k$-th constraint only) and setting its cost coefficient to zero in the objective. That is,
$A_k \cdot x+x_{n+1}=b_k, \quad x_{n+1}$ is free.
(Note: We could consider setting the right-hand side to zero; however, a constant in a nonbinding constraint does not affect the optimal objective value, so we do not set $b_k=0$.) Next we can convert the revised constraint to fit into the standard form with the rest of the constraints by expressing $x_{n+1}$ as the difference of two nonnegative variables, that is
$$
A_k \cdot x+x_{n+1}^{+}-x_{n+1}^{-}=b_k, \quad x_{n+1}^{+} \geq 0, x_{n+1}^{-} \geq 0 .
$$
After this, we apply $B^{-1}$ to the two new columns, and price them out. One of them will price out positive, the other one negative, or both may price out zero. We pivot to bring the positive (or zero) reduced-cost column into the basis and continue, if necessary, until the algorithm terminats with an optimal solution or an indication that none exists.

数学代写|优化理论代写Optimization Theory代考|Ranging (Sensitivity analysis)

As mentioned earlier, ranging, or sensitivity analysis, has to do with the impact of small changes to the optimal solution. With ranging we examine the extent to which changes in a single element do not affect the optimal basis. For example, we would be interested in how much a right-hand side element $b_i$ could change without causing the optimal basis to change. This would be important for key resources where we would be concerned about the impact of market variations, or simply concerned that we were off in our estimate of its value. In a similar vein, it would be comforting to know that minor variations in cost (or elements of the data matrix) do not impact our solution much. Such analysis has its limitations since we are only discussing modifications of single elements; later, in Section 6.3, we shall consider changing multiple elements through the use of parametric programming.

Let $B=\left[A \cdot j_1 \cdots A \bullet j_m\right]$ be an optimal basis for the LP
$$
\text { minimize } c^{\mathrm{T}} x \quad \text { subject to } A x=b, x \geq 0
$$
where $A$ is $m \times n$. Let $I_{\bullet} k$ denote the $k$-th column of the $m \times m$ identity matrix. Changing only the $k$-th component of $b$, from $b_k$ to $\hat{b}k=b_k+\delta$, amounts to creating a new right-hand side vector, say $$ \hat{b}=b+\delta I{\bullet} k
$$

数学代写|优化理论代写Optimization Theory代考|Deleting an inequality or equality constraint

优化理论代写

数学代写|优化理论代写Optimization Theory代考|Deleting an inequality or equality constraint

一旦获得最优解,删除约束的方法是相同的,无论是不等式还是等式。因此,我们假设我们正在删除 个等式约束。
假设在获得最优解后,说 $\bar{x}$ ,我们决定一个特定的约束 $A_k \cdot x=b_k$ 需要删除。虽然 $\bar{x}$ 对于修改后的 问题是可行的,删除此约束将减小基础的大小并可能导致对偶不可行。要“物理地”从系统中删除约束 并更新基础逆 (或因式分解) 可能需要大量的计算工作。更简单的做法是使约束成为非绑定的,这意 味着左侧不再需要取值 $b_k$.
我们可以使 $k$-th 约束非约束通过引入自由变量 $x_{n+1}$ (在里面 $k$-th 约束) 并在目标中将其成本系数 设置为零。那是, $A_k \cdot x+x_{n+1}=b_k, \quad x_{n+1}$ 免费。
(注意: 我们可以考虑将右侧设置为零;但是,非约束约束中的常数不会影响最优目标值,因此我们] 不设置 $b_k=0$.) 接下来,我们可以将修改后的约束转换为与其余约束一起符合标准形式的表达式 $x_{n+1}$ 作为两个非负变量的差值,即
$$
A_k \cdot x+x_{n+1}^{+}-x_{n+1}^{-}=b_k, \quad x_{n+1}^{+} \geq 0, x_{n+1}^{-} \geq 0
$$
在此之后,我们申请 $B^{-1}$ 到两个新列,并为它们定价。其中一个的价格为正,另一个为负,或者两 者都可能为零。我们转向将正 (或零) 成本降低列带入基础,并在必要时继续,直到算法以最佳解决 方案终止或指示不存在。

数学代写|优化理论代写Optimization Theory代考|Ranging (Sensitivity analysis)

如前所述,范围或灵敏度分析与最佳解决方案的微小变化的影响有关。通过测距,我们检查单个元素 的变化在多大程度上不影响最佳基础。例如,我们会对右侧元素有多少感兴趣 $b_i$ 可以在不导致最佳基 础发生变化的情况下发生变化。这对于我们会担心市场变化的影响,或者只是担心我们对其价值的估 计有偏差的关键资源来说很重要。同样,如果知道成本 (或数据矩阵的元素) 的微小变化不会对我们 的解决方案产生太大影响,那将是令人欣慰的。这种分析有其局限性,因为我们只讨论单个元素的修 改;稍后,在 6.3 节中,我们将考虑通过使用参数化编程来更改多个元素。
让 $B=\left[A \cdot j_1 \cdots A \bullet j_m\right]$ 成为LP的最佳基础
$$
\operatorname{minimize} c^{\mathrm{T}} x \quad \text { subject to } A x=b, x \geq 0
$$
在哪里 $A$ 是 $m \times n$. 让 $I_{\bullet} k$ 表示 $k$ – 的第列 $m \times m$ 单位矩阵。只改变 $k$ – 的第一个组成部分 $b$ ,从 $b_k$ 到 $\hat{b} k=b_k+\delta ,$ 相当于创建一个新的右侧向量,比如说
$$
\hat{b}=b+\delta I \bullet k
$$

数学代写|优化理论代写Optimization Theory代考

数学代写|优化理论代写Optimization Theory代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Write a Reply or Comment

您的电子邮箱地址不会被公开。 必填项已用 * 标注