Posted on Categories:Calculus Assignment, 微积分, 数学代写

数学代写|微积分代写Calculus代考|One-Sided Limits of Functions

如果你也在 怎样代写微积分Calculus 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。微积分Calculus 最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

微积分Calculus 它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互关联,它们利用了无限序列和无限数列收敛到一个明确定义的极限的基本概念 。17世纪末,牛顿(Isaac Newton)和莱布尼兹(Gottfried Wilhelm Leibniz)独立开发了无限小数微积分。后来的工作,包括对极限概念的编纂,将这些发展置于更坚实的概念基础上。今天,微积分在科学、工程和社会科学中得到了广泛的应用。

微积分Calculus 代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。 最高质量的微积分Calculus 作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此微积分Calculus 作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试,包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您,创造模拟试题,提供所有的问题例子,以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试,我们都能帮助您!

在不断发展的过程中,avatest™如今已经成长为论文代写,留学生作业代写服务行业的翘楚和国际领先的教育集团。全体成员以诚信为圆心,以专业为半径,以贴心的服务时刻陪伴着您, 用专业的力量帮助国外学子取得学业上的成功。

•最快12小时交付 

•200+ 英语母语导师 

•70分以下全额退款

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

我们在数学Mathematics代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在微积分Calculus 代写方面经验极为丰富,各种微积分Calculus 相关的作业也就用不着 说。

数学代写|微积分代写Calculus代考|One-Sided Limits of Functions

数学代写|微积分代写Calculus代考|One-Sided Limits of Functions

Limits from the Right
We say that the function $f$ has a limit from the right at $\boldsymbol{x}=\boldsymbol{a}$ (or the righthand limit of $f$ exists at $x=a$ ) whose value is $L$ and denote this symbolically by
$$
f(a+0)=\lim _{x \rightarrow a^{+}} f(x)=L
$$
if BOTH of the following statements are satisfied:

Let $x>a$ and $x$ be very close to $x=a$.

As $x$ approaches $a$ (“from the right” because ” $x>a$ “), the values of $f(x)$ approach the value $L$.
(For a more rigorous definition see the Advanced Topics, later on.)
Table 2.2: One-Sided Limits From the Right
For example, the function $H$ defined by
$$
H(x)= \begin{cases}1, & \text { for } x \geq 0 \ 0, & \text { for } x<0\end{cases}
$$
called the Heaviside Function (named after Oliver Heaviside, (1850 – 1925) an electrical engineer) has the property that
$$
\lim _{x \rightarrow 0^{+}} H(x)=1
$$
Why? This is because we can set $a=0$ and $f(x)=H(x)$ in the definition (or in Table 2.2) and apply it as follows:

a) Let $x>0$ and $x$ be very close to 0 ;
b) As $x$ approaches 0 we need to ask the question: “What are the values, $H(x)$, doing?”

Well, we know that $H(x)=1$ for any $x>0$, so, as long as $x \neq 0$, the values $H(x)=1$, (see Fig. 17), so this will be true “in the limit” as $x$ approaches 0 .
Limits from the Left
We say that the function $f$ has a limit from the left at $x=a$ (or the lefthand limit of $f$ exists at $x=a$ ) and is equal to $L$ and denote this symbolically by
$$
f(a-0)=\lim _{x \rightarrow a^{-}} f(x)=L
$$
if BOTH of the following statements are satisfied:

  1. Let $x<a$ and $x$ be very close to $x=a$.
  2. As $x$ approaches $a$ (“from the left” because ” $x<a$ “), the values of $f(x)$ approach the value $L$.

数学代写|微积分代写Calculus代考|Two-Sided Limits and Continuity

At this point we know how to determine the values of the limit from the left (or right) of a given function $f$ at a point $x=a$. We have also seen that whenever
$$
\lim {x \rightarrow a^{+}} f(x) \neq \lim {x \rightarrow a^{-}} f(x)
$$
then there is a ‘break’ in the graph of $f$ at $x=a$. The absence of breaks or holes in the graph of a function is what the notion of continuity is all about.
Definition of the limit of a function at $x=a$.
We say that a function $f$ has the (two-sided) limit $L$ as $x$ approaches $a$ if
$$
\lim {x \rightarrow a^{+}} f(x)=\lim {x \rightarrow a^{-}} f(x)=L
$$
When this happens, we write (for brevity)
$$
\lim _{x \rightarrow a} f(x)=L
$$
and read this as: the limit of $f(x)$ as $x$ approaches $a$ is $L$ ( $L$ may be infinite here).

NOTE: So, in order for a limit to exist both the right- and left-hand limits must exist and be equal. Using this notion we can now define the ‘continuity of a function $f$ at a point $x=a$.’

We say that $f$ is continuous at $x=a$ if all the following conditions are satisfied:

  1. $f$ is defined at $x=a$ (i.e., $f(a)$ is finite)
  2. $\lim {x \rightarrow a^{+}} f(x)=\lim {x \rightarrow a^{-}} f(x)(=L$, their common value $)$ and
  3. $L=f(a)$.
    NOTE: These three conditions must be satisfied in order for a function $f$ to be continuous at a given point $x=a$. If any one or more of these conditions is not satisfied we say that $f$ is discontinuous at $x=a$. In other words, we see from the Definition above (or in Table 2.7) that the one-sided limits from the left and right must be equal in order for $f$ to be continuous at $x=a$ but that this equality, in itself, is not enough to guarantee continuity as there are 2 other conditions that need to be satisfied as well.
数学代写|微积分代写Calculus代考|One-Sided Limits of Functions

微积分代写

数学代写|微积分代写Calculus代考|One-Sided Limits of Functions

来自右派的限制
我们说函数$f$从右边开始在$\boldsymbol{x}=\boldsymbol{a}$有一个极限(或者$f$的右边极限在$x=a$),它的值是$L$,并用符号表示
$$
f(a+0)=\lim _{x \rightarrow a^{+}} f(x)=L
$$
如果满足以下两个陈述:

让$x>a$和$x$非常接近$x=a$。

当$x$接近$a$(“从右”,因为“$x>a$”)时,$f(x)$的值接近于$L$。
(有关更严格的定义,请参阅后面的高级主题。)
表2.2:从右侧开始的单侧限制
例如,定义的函数$H$
$$
H(x)= \begin{cases}1, & \text { for } x \geq 0 \ 0, & \text { for } x<0\end{cases}
$$
称为Heaviside函数(以电气工程师Oliver Heaviside(1850 – 1925)的名字命名)具有以下性质
$$
\lim _{x \rightarrow 0^{+}} H(x)=1
$$
为什么?这是因为我们可以在定义中(或在表2.2中)设置$a=0$和$f(x)=H(x)$,并按照如下方式应用它们:

a)令$x>0$和$x$非常接近于0;
b)当$x$接近0时,我们需要问这样一个问题:“$H(x)$的值在做什么?”

好吧,我们知道$H(x)=1$对于任何$x>0$,所以,只要$x \neq 0$,值$H(x)=1$,(见图17),所以当$x$接近0时,这将是“在极限”。
来自左边的限制
我们说,函数$f$从左边到$x=a$有一个极限(或者$f$的左边极限在$x=a$),等于$L$,用符号表示
$$
f(a-0)=\lim _{x \rightarrow a^{-}} f(x)=L
$$
如果满足以下两个陈述:

让$x<a$和$x$非常接近$x=a$。

当$x$接近$a$(“从左”,因为“$x<a$”)时,$f(x)$的值接近于$L$。

数学代写|微积分代写Calculus代考|Two-Sided Limits and Continuity

此时,我们知道如何确定给定函数$f$在一点$x=a$处的左(或右)极限值。我们也看到过
$$
\lim {x \rightarrow a^{+}} f(x) \neq \lim {x \rightarrow a^{-}} f(x)
$$
然后在$x=a$的$f$图中有一个“中断”。函数图中没有间断或空洞就是连续性概念的全部内容。
函数极限的定义$x=a$。
我们说,当$x$接近$a$ if时,函数$f$具有(双面)极限$L$
$$
\lim {x \rightarrow a^{+}} f(x)=\lim {x \rightarrow a^{-}} f(x)=L
$$
当发生这种情况时,我们写(为了简洁)
$$
\lim _{x \rightarrow a} f(x)=L
$$
可以这样读:当$x$接近$a$时,$f(x)$的极限是$L$ ($L$在这里可能是无穷大)。

注意:因此,为了使极限存在,左、右极限必须同时存在且相等。利用这个概念,我们现在可以定义“函数$f$在一点$x=a$处的连续性”。

如果满足以下所有条件,我们说$f$在$x=a$连续:

$f$ 定义于$x=a$(即$f(a)$是有限的)

$\lim {x \rightarrow a^{+}} f(x)=\lim {x \rightarrow a^{-}} f(x)(=L$,它们的共同价值$)$和

$L=f(a)$.
注意:要使函数$f$在给定点$x=a$连续,必须满足这三个条件。如果这些条件中的任何一个或多个不满足,我们说$f$在$x=a$处不连续。换句话说,我们从上面的定义(或表2.7)中看到,为了使$f$在$x=a$连续,左、右的单侧极限必须相等,但这个等式本身并不足以保证连续性,因为还有另外两个条件需要满足。

数学代写|微积分代写Calculus 代考

数学代写|微积分代写Calculus 代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Write a Reply or Comment

您的电子邮箱地址不会被公开。 必填项已用 * 标注