Posted on Categories:Combinatorics, 数学代写, 组合学

数学代写|组合学代写Combinatorics代考|Recursions

如果你也在 怎样代写组合学Combinatorics 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。组合学Combinatorics是数学的一个领域,主要涉及计数(作为获得结果的手段和目的)以及有限结构的某些属性。主要涉及计数,作为获得结果的手段和目的,以及有限结构的某些属性。它与数学的许多其他领域密切相关,有许多应用,从逻辑学到统计物理学,从进化生物学到计算机科学。

组合学Combinatorics因其解决的问题的广泛性而闻名。组合问题出现在纯数学的许多领域,特别是在代数、概率论、拓扑学和几何学中,以及在其许多应用领域。许多组合问题在历史上被孤立地考虑,对某个数学背景下出现的问题给出一个临时性的解决方案。然而,在二十世纪后期,强大而普遍的理论方法被开发出来,使组合学本身成为一个独立的数学分支。组合学最古老和最容易理解的部分之一是图论,它本身与其他领域有许多自然联系。在计算机科学中,组合学经常被用来获得算法分析中的公式和估计。

组合学Combinatorics代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。 最高质量的组合学Combinatorics作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此组合学Combinatorics作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试,包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您,创造模拟试题,提供所有的问题例子,以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试,我们都能帮助您!

在不断发展的过程中,avatest™如今已经成长为论文代写,留学生作业代写服务行业的翘楚和国际领先的教育集团。全体成员以诚信为圆心,以专业为半径,以贴心的服务时刻陪伴着您, 用专业的力量帮助国外学子取得学业上的成功。

•最快12小时交付 

•200+ 英语母语导师 

•70分以下全额退款

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

我们在数学Mathematics代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在组合学Combinatorics代写方面经验极为丰富,各种组合学Combinatorics相关的作业也就用不着 说。

数学代写|组合学代写Combinatorics代考|Recursions

数学代写|组合学代写Combinatorics代考|Recursions

Let’s explore yet another approach to evaluating the binomial coefficient $C(n, k)$. As in the previous section, let $S=\left{x_1, \ldots, x_n\right}$. We’ll think of $C(n, k)$ as counting $k$-subsets of $S$. Either the element $x_n$ is in our subset or it is not. The cases where it is in the subset are all formed by taking the various $(k-1)$-subsets of $S-\left{x_n\right}$ and adding $x_n$ to them. The cases where it is not in the subset are all formed by taking the various $k$-subsets of $S-\left{x_n\right}$. What we’ve done is describe how to build $k$-subsets of $S$ from certain subsets of $S-\left{x_n\right}$. Since this gives each subset exactly once,
$$
\left(\begin{array}{l}
n \
k
\end{array}\right)=\left(\begin{array}{l}
n-1 \
k-1
\end{array}\right)+\left(\begin{array}{c}
n-1 \
k
\end{array}\right)
$$
by the Rule of Sum.
The equation $C(n, k)=C(n-1, k-1)+C(n-1, k)$ is called a recursion because it tells how to compute $C(n, k)$ from values of the function with smaller arguments. This is a common approach which we can state in general form as follows.

Technique. Deriving recursions Answering the question “How can I construct the things I want to count by using the same type of things of a smaller size?” usually gives a recursion.
Sometimes it is easier to answer the question “How can I break the things I want to count up into smaller things of the same type?” This usually gives a recursion when it is turned around to answer the previous question.

数学代写|组合学代写Combinatorics代考|Multisets

Let $M(n, k)$ be the number of ways to choose $k$ elements from an $n$-set when repetition is allowed and order doesn’t matter. Will any of our three methods for handling $C(n, k)$ work for $M(n, k)$ ? Let’s examine them.

  • Imposing an order: The critical observation for our first method was that an unordered list can be ordered in $k$ ! ways. This is not true if repetitions are allowed. To see this, note that the extreme case of $k$ repetitions of one element has only one ordering.
  • Using a recursion: We might be able to obtain a recursion, but we would still be faced with the problem of solving it.
  • Using generating functions: To use the generating functions we have to allow for repetitions. This can be done very easily: Simply replace $\left(1+x_i\right)$ in Example 1.14 (p. 19) with the infinite sum
    $$
    1+x_i+x_i^2+x_i^3+\cdots,
    $$
    a geometric series which sums to $\left(1-x_i\right)^{-1}$. Why does this replacement work? When we studied $C(n, k)$ in Example 1.14, the two terms in the factor $1+x_i$ corresponded to not choosing the $i$ th element OR choosing it, respectively. Now we need more terms: $x_i x_i$ for when the $i$ th element is chosen to appear twice in our unordered list, $x_i x_i x_i$ for three appearances, and so forth. The distributive law still takes care of producing all possible combinations. As in Example 1.14, if we replace $x_i$ by $x$ for all $i$, the coefficient of $x^k$ will be the number of multisets of size $k$. Thus $M(n, k)$ is the coefficient of $x^k$ in $(1-x)^{-n}$. You should be able to use this fact and Taylor’s Theorem to obtain $M(n, k)=(n+k-1) ! /(n-1) ! k !$.
数学代写|组合学代写Combinatorics代考|Labelled versus unlabelled enumeration

组合学代写

数学代写|组合学代写Combinatorics代考|Labelled versus unlabelled enumeration

让我们探索另一种计算二项式系数$C(n, k)$的方法。与前一节一样,让$S=\left{x_1, \ldots, x_n\right}$。我们把$C(n, k)$看作是$S$的$k$ -子集。元素$x_n$要么在我们的子集中,要么不在。它在子集中的情况都是通过获取$S-\left{x_n\right}$的各种$(k-1)$ -子集并将$x_n$添加到它们中形成的。它不在子集中的情况都是通过取$S-\left{x_n\right}$的各种$k$ -子集形成的。我们所做的是描述如何从$S-\left{x_n\right}$的某些子集构建$S$的$k$ -子集。因为这给了每个子集一次,
$$
\left(\begin{array}{l}
n \
k
\end{array}\right)=\left(\begin{array}{l}
n-1 \
k-1
\end{array}\right)+\left(\begin{array}{c}
n-1 \
k
\end{array}\right)
$$
根据总和法则。
方程$C(n, k)=C(n-1, k-1)+C(n-1, k)$被称为递归,因为它告诉我们如何用较小的参数从函数的值计算$C(n, k)$。这是一种常见的方法,我们可以用一般形式陈述如下。

技巧。如果要回答“如何使用相同类型的较小的数来构造我想要计数的数?”这个问题,通常会给出一个递归。
有时候回答这个问题更容易:“我怎样才能把我想要计算的事情分解成相同类型的小事情?”当它反过来回答前一个问题时,通常会得到一个递归。

数学代写|组合学代写Combinatorics代考|Surjections and set partitions

当允许重复且顺序无关紧要时,设$M(n, k)$为从$n$ -集中选择$k$元素的方法个数。我们处理$C(n, k)$的三种方法中有一种对$M(n, k)$有效吗?让我们来检查一下。

强加顺序:我们的第一个方法的关键观察结果是无序列表可以在$k$ !方法。如果允许重复,则不成立。要了解这一点,请注意$k$重复一个元素的极端情况只有一个顺序。

使用递归:我们可能能够获得递归,但我们仍然面临求解它的问题。

使用生成函数:为了使用生成函数,我们必须允许重复。这很容易做到:只需将例1.14中的$\left(1+x_i\right)$替换为无限和即可
$$
1+x_i+x_i^2+x_i^3+\cdots,
$$
一个和为$\left(1-x_i\right)^{-1}$的几何级数。为什么这种替换会起作用?当我们在例1.14中研究$C(n, k)$时,因子$1+x_i$中的两个项分别对应于不选择$i$第一个元素或选择它。现在我们需要更多的项:$x_i x_i$表示选择第$i$个元素在无序列表中出现两次,$x_i x_i x_i$表示出现三次,以此类推。分配律仍然负责产生所有可能的组合。如例1.14所示,如果我们将所有$i$的$x_i$替换为$x$, $x^k$的系数将是大小为$k$的多集的个数。因此$M(n, k)$是$(1-x)^{-n}$中的$x^k$的系数。你应该可以用这个事实和泰勒定理得到$M(n, k)=(n+k-1) ! /(n-1) ! k !$。

数学代写|组合学代写Combinatorics代考

数学代写|组合学代写Combinatorics代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Write a Reply or Comment

您的电子邮箱地址不会被公开。 必填项已用 * 标注