Posted on Categories:Cryptography, 密码学, 数学代写

数学代写|密码学代写Cryptography Theory代考|Differing perspectives

avatest™

avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试，包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您，创造模拟试题，提供所有的问题例子，以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试，我们都能帮助您！

•最快12小时交付

•200+ 英语母语导师

•70分以下全额退款

数学代写|密码学Cryptography Theory代考|Differing perspectives

It should already be clear that there is a need for translation of the basic security mechanisms used in the physical world into mechanisms suitable for application in an electronic environment. In essence, this is what modern cryptography is all about. A central aim of this book is to demonstrate precisely what role cryptography plays in this translation process.

If this book was just about cryptography itself, then we could immediately proceed to a discussion of cryptographic mechanisms. However, this book is not just about the principles, but also about the application of cryptography. We thus need to understand in a wider sense how cryptography fulfils a role in the provision of information security.

We now identify three different perspectives on the use of cryptography. The vested interests that these represent, and some of the resulting conflicts, have helped shape the modern use of cryptography.
INDIVIDUAL PERSPECTIVE
Cryptography is a technology just like any other. Thus, the perspective of many individuals is that they have a right to use cryptography for any purpose they deem fit. As we discuss later, using cryptography to encrypt data can serve a similar function to sealing a document in an envelope in the physical world. Thus, why should individuals be denied the right to use encryption? Further, many people regard cryptography as a technology that enables them to realise other rights. Foremost among these are rights to privacy and freedom of expression.

数学代写|密码学Cryptography Theory代考|The importance of security infrastructure

The security commentator Bruce Schneier wrote a book called Applied Cryptography in the early 1990s. A few years later he wrote a book on computer security called Secrets and Lies. He claimed that during the writing of the second book he had an ‘epiphany’ in which he realised that all the cryptographic mechanisms in Applied Cryptography were almost immaterial compared to the ‘real’ security problems associated with the provision of a complete information security system. The biggest problem was not designing the cryptographic mechanisms themselves. The real problem was making the cryptography actually work in a practical system through the provision of an entire information security architecture, of which cryptography was only a small, but vital, component.

This is an important issue and one that needs to be kept in mind throughout this book. Cryptography, just like any security technology, cannot be made to work without having the infrastructure in place to support its implementation. By ‘infrastructure’ we mean the procedures, plans, policies, management -whatever it takes – to make sure that the cryptographic mechanisms actually do the job for which they were intended.

We will consider certain aspects of this infrastructure. However, there are many aspects of this infrastructure that are well beyond the scope of our discussions. Ideally, computer operating systems should be designed and used securely, networks should be implemented and configured securely, and entire information systems should be planned and managed securely. A perfectly good cryptographic mechanism can fail to deliver its intended security services if any one of these other areas of the security infrastructure fail.

This holistic attitude to information security is one that must always be kept in mind whenever a cryptographic application is designed or used. One of the aims of this book is to identify which elements of this wider security infrastructure are particularly relevant to the effectiveness of a cryptographic application.

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。