Posted on Categories:Multivariate Statistical Analysis, 多元统计分析, 统计代写, 统计代考

统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Chernoff-Flury Faces

如果你也在 怎样代写多元统计分析Multivariate Statistical Analysis STAT5610这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。多元统计分析Multivariate Statistical Analysis是统计学的一个分支,包括同时观察和分析一个以上的结果变量。多变量统计涉及到理解每一种不同形式的多变量分析的不同目的和背景,以及它们之间的关系。多变量统计在某一特定问题上的实际应用可能涉及几种类型的单变量和多变量分析,以了解变量之间的关系以及它们与所研究问题的相关性。

多元统计分析Multivariate Statistical Analysis是基于多变量统计的原理。通常情况下,MVA用于解决对每个实验单元进行多次测量的情况,这些测量之间的关系及其结构很重要。现代的、重叠的MVA分类包括:正态和一般多变量模型和分布理论、关系的研究和测量、多维区域的概率计算、对数据结构和模式的探索、由于希望包括基于物理学的分析,以计算变量对分层 “系统中的系统 “的影响,多变量分析可能变得复杂。通常情况下,希望使用多变量分析的研究会因为问题的维度而停滞。这些问题通常通过使用代理模型来缓解,代理模型是基于物理学的代码的高度精确的近似。由于代用模型采取方程的形式,它们可以被快速评估。这成为大规模MVA研究的一个有利因素:在基于物理学的代码中,整个设计空间的蒙特卡洛模拟是困难的,而在评估代用模型时,它变得微不足道,代用模型通常采取响应面方程式的形式。

多元统计分析Multivariate Statistical Analysis,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。 最高质量的回归分析Regression Analysis作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此多元统计分析Multivariate Statistical Analysis作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试,包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您,创造模拟试题,提供所有的问题例子,以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试,我们都能帮助您!

在不断发展的过程中,avatest™如今已经成长为论文代写,留学生作业代写服务行业的翘楚和国际领先的教育集团。全体成员以诚信为圆心,以专业为半径,以贴心的服务时刻陪伴着您, 用专业的力量帮助国外学子取得学业上的成功。

•最快12小时交付 

•200+ 英语母语导师 

•70分以下全额退款

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

我们在统计Statistics代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在多元统计分析Multivariate Statistical Analysis代写方面经验极为丰富,各种多元统计分析Multivariate Statistical Analysis相关的作业也就用不着 说。

统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Chernoff-Flury Faces

统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Chernoff-Flury Faces

If we are given data in numerical form, we tend to display it also numerically. This was done in the preceding sections: an observation $x_1=(1,2)$ was plotted as the point $(1,2)$ in a two-dimensional coordinate system. In multivariate analysis we want to understand data in low dimensions (e.g., on a 2D computer screen) although the structures are hidden in high dimensions. The numerical display of data structures using coordinates therefore ends at dimensions greater than three.

If we are interested in condensing a structure into $2 \mathrm{D}$ elements, we have to consider alternative graphical techniques. The Chernoff-Flury faces, for example, provide such a condensation of high-dimensional information into a simple “face”. In fact faces are a simple way to graphically display high-dimensional data. The size of the face elements like pupils, eyes, upper and lower hair line, etc., are assigned to certain variables. The idea of using faces goes back to Chernoff (1973) and has been further developed by Bernhard Flury. We follow the design described in Flury and Riedwyl (1988) which uses the following characteristics.
$\begin{aligned} 1 & \text { right eye size } \ 2 & \text { right pupil size } \ 3 & \text { position of right pupil } \ 4 & \text { right eye slant } \ 5 & \text { horizontal position of right eye } \ 6 & \text { vertical position of right eye } \ 7 & \text { curvature of right eyebrow } \ 8 & \text { density of right eyebrow } \ 9 & \text { horizontal position of right eyebrow } \ 10 & \text { vertical position of right eyebrow } \ 11 & \text { right upper hair line } \ 12 & \text { right lower hair line } \ 13 & \text { right face line } \ 14 & \text { darkness of right hair } \ 15 & \text { right hair slant } \ 16 & \text { right nose line } \ 17 & \text { right size of mouth } \ 18 & \text { right curvature of mouth } \ 36 & \text { like } 1-18 \text {, only for the left side. }\end{aligned}$
1 right eye size
2 right pupil size
3 position of right pupil
4 right eye slant
5 horizontal position of right eye
6 vertical position of right eye
7 curvature of right eyebrow
8 density of right eyebrow
9 horizontal position of right eyebrow
10 vertical position of right eyebrow
11 right upper hair line
12 right lower hair line
13 right face line
14 darkness of right hair
15 right hair slant
16 right nose line
17 right size of mouth
18 right curvature of mouth
19-36 like 1-18, only for the left side.

统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Andrews’ Curves

The basic problem of graphical displays of multivariate data is the dimensionality. Scatterplots work well up to three dimensions (if we use interactive displays). More than three dimensions have to be coded into displayable 2D or 3D structures (e.g., faces). The idea of coding and representing multivariate data by curves was suggested by Andrews (1972). Each multivariate observation $X_i=\left(X_{i, 1}, . ., X_{i, p}\right)$ is transformed into a curve as follows:
$$
f_i(t)= \begin{cases}\frac{X_{i, 1}}{\sqrt{2}}+X_{i, 2} \sin (t)+X_{i, 3} \cos (t)+\ldots+X_{i, p-1} \sin \left(\frac{p-1}{2} t\right)+X_{i, p} \cos \left(\frac{p-1}{2} t\right) & \text { for } p \text { odd } \ \frac{X_{i, 1}}{\sqrt{2}}+X_{i, 2} \sin (t)+X_{i, 3} \cos (t)+\ldots+X_{i, p} \sin \left(\frac{p}{2} t\right) & \text { for } p \text { even }\end{cases}
$$
such that the observation represents the coefficients of a so-called Fourier series $(t \in[-\pi, \pi])$.
Suppose that we have three-dimensional observations: $X_1=(0,0,1), X_2=(1,0,0)$ and $X_3=(0,1,0)$. Here $p=3$ and the following representations correspond to the Andrews’ curves:
$$
\begin{aligned}
f_1(t) & =\cos (t) \
f_2(t) & =\frac{1}{\sqrt{2}} \text { and } \
f_3(t) & =\sin (t) .
\end{aligned}
$$
These curves are indeed quite distinct, since the observations $X_1, X_2$, and $X_3$ are the 3D unit vectors: each observation has mass only in one of the three dimensions. The order of the variables plays an important role.

统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Chernoff-Flury Faces

多元统计分析代写

统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Chernoff-Flury Faces

如果我们得到数字形式的数据,我们也倾向于用数字来显示它。这是在前面的章节中完成的:将观测值$x_1=(1,2)$绘制为二维坐标系中的点$(1,2)$。在多元分析中,我们想要理解低维度的数据(例如,在二维计算机屏幕上),尽管结构隐藏在高维中。因此,使用坐标的数据结构的数值显示结束于大于3的维度。

如果我们有兴趣将结构压缩为$2 \mathrm{D}$元素,我们必须考虑其他图形技术。例如,Chernoff-Flury脸就将高维信息浓缩成一张简单的“脸”。事实上,面是一种以图形方式显示高维数据的简单方法。面部元素的大小,如瞳孔、眼睛、上下发际线等,被分配给特定的变量。使用面孔的想法可以追溯到Chernoff(1973),并由Bernhard Flury进一步发展。我们遵循Flury和Riedwyl(1988)所描述的设计,使用以下特征。
$\begin{aligned} 1 & \text { right eye size } \ 2 & \text { right pupil size } \ 3 & \text { position of right pupil } \ 4 & \text { right eye slant } \ 5 & \text { horizontal position of right eye } \ 6 & \text { vertical position of right eye } \ 7 & \text { curvature of right eyebrow } \ 8 & \text { density of right eyebrow } \ 9 & \text { horizontal position of right eyebrow } \ 10 & \text { vertical position of right eyebrow } \ 11 & \text { right upper hair line } \ 12 & \text { right lower hair line } \ 13 & \text { right face line } \ 14 & \text { darkness of right hair } \ 15 & \text { right hair slant } \ 16 & \text { right nose line } \ 17 & \text { right size of mouth } \ 18 & \text { right curvature of mouth } \ 36 & \text { like } 1-18 \text {, only for the left side. }\end{aligned}$
1右眼大小
2瞳孔大小合适
3 .右瞳孔位置
4 .右眼倾斜
5 .右眼水平位置
6 .右眼垂直位置
右眉弧度
8 .右眉密度
9 .右眉水平位置
10 .右眉垂直位置
11号右上发际线
12号右下发际线
13右面线
14黑色的右头发
15 .右头发倾斜
16右鼻线
17 .嘴巴大小合适
18 .嘴巴右弯曲
19-36和1-18一样,只在左边。

统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Andrews’ Curves

多维数据图形化显示的基本问题是维数问题。散点图在三维范围内工作得很好(如果我们使用交互式显示)。超过三个维度必须编码为可显示的2D或3D结构(例如,面部)。用曲线编码和表示多变量数据的想法是由Andrews(1972)提出的。将每个多变量观测值$X_i=\left(X_{i, 1}, . ., X_{i, p}\right)$转换成如下曲线:
$$
f_i(t)= \begin{cases}\frac{X_{i, 1}}{\sqrt{2}}+X_{i, 2} \sin (t)+X_{i, 3} \cos (t)+\ldots+X_{i, p-1} \sin \left(\frac{p-1}{2} t\right)+X_{i, p} \cos \left(\frac{p-1}{2} t\right) & \text { for } p \text { odd } \ \frac{X_{i, 1}}{\sqrt{2}}+X_{i, 2} \sin (t)+X_{i, 3} \cos (t)+\ldots+X_{i, p} \sin \left(\frac{p}{2} t\right) & \text { for } p \text { even }\end{cases}
$$
使得观测值代表了所谓的傅立叶级数的系数$(t \in[-\pi, \pi])$。
假设我们有三维观测:$X_1=(0,0,1), X_2=(1,0,0)$和$X_3=(0,1,0)$。这里$p=3$和下面的表示对应于Andrews的曲线:
$$
\begin{aligned}
f_1(t) & =\cos (t) \
f_2(t) & =\frac{1}{\sqrt{2}} \text { and } \
f_3(t) & =\sin (t) .
\end{aligned}
$$
这些曲线确实非常不同,因为观测值$X_1, X_2$和$X_3$是三维单位向量:每个观测值只在三维中的一个维度上有质量。变量的顺序起着重要的作用。

统计代写|多元统计分析代写Multivariate Statistical Analysis代考

统计代写|多元统计分析代写Multivariate Statistical Analysis代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Write a Reply or Comment

您的电子邮箱地址不会被公开。 必填项已用 * 标注