Posted on Categories:Operations Research, 数学代写, 运筹学

# 数学代写|运筹学代写Operations Research代考|DEFINING THE PROBLEM AND GATHERING DATA

avatest™

## avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试，包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您，创造模拟试题，提供所有的问题例子，以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试，我们都能帮助您！

•最快12小时交付

•200+ 英语母语导师

•70分以下全额退款

## 数学代写|运筹学代写Operations Research代考|DEFINING THE PROBLEM AND GATHERING DATA

In contrast to textbook examples, most practical problems encountered by OR teams are initially described to them in a vague, imprecise way. Therefore, the first order of business is to study the relevant system and develop a well-defined statement of the problem to be considered. This includes determining such things as the appropriate objectives, constraints on what can be done, interrelationships between the area to be studied and other areas of the organization, possible alternative courses of action, time limits for making a decision, and so on. This process of problem definition is a crucial one because it greatly affects how relevant the conclusions of the study will be. It is difficult to extract a “right” answer from the “wrong” problem!

The first thing to recognize is that an OR team is normally working in an advisory capacity. The team members are not just given a problem and told to solve it however they see fit. Instead, they are advising management (often one key decision maker). The team performs a detailed technical analysis of the problem and then presents recommendations to management. Frequently, the report to management will identify a number of alternatives that are particularly attractive under different assumptions or over a different range of values of some policy parameter that can be evaluated only by management (e.g., the tradeoff between cost and benefits). Management evaluates the study and its recommendations, takes into account a variety of intangible factors, and makes the final decision based on its best judgment. Consequently, it is vital for the OR team to get on the same wavelength as management, including identifying the “right” problem from management’s viewpoint, and to build the support of management for the course that the study is taking.

Ascertaining the appropriate objectives is a very important aspect of problem definition. To do this, it is necessary first to identify the member (or members) of management who actually will be making the decisions concerning the system under study and then to probe into this individual’s thinking regarding the pertinent objectives. (Involving the decision maker from the outset also is essential to build her or his support for the implementation of the study.)

By its nature, OR is concerned with the welfare of the entire organization rather than that of only certain of its components. An OR study seeks solutions that are optimal for the overall organization rather than suboptimal solutions that are best for only one component. Therefore, the objectives that are formulated ideally should be those of the entire organization. However, this is not always convenient. Many problems primarily concern only a portion of the organization, so the analysis would become unwieldy if the stated objectives were too general and if explicit consideration were given to all side effects on the rest of the organization. Instead, the objectives used in the study should be as specific as they can be while still encompassing the main goals of the decision maker and maintaining a reasonable degree of consistency with the higher-level objectives of the organization.

## 数学代写|运筹学代写Operations Research代考|FORMULATING A MATHEMATICAL MODEL

After the decision maker’s problem is defined, the next phase is to reformulate this problem in a form that is convenient for analysis. The conventional OR approach for doing this is to construct a mathematical model that represents the essence of the problem. Before discussing how to formulate such a model, we first explore the nature of models in general and of mathematical models in particular.

Models, or idealized representations, are an integral part of everyday life. Common examples include model airplanes, portraits, globes, and so on. Similarly, models play an important role in science and business, as illustrated by models of the atom, models of genetic structure, mathematical equations describing physical laws of motion or chemical reactions, graphs, organizational charts, and industrial accounting systems. Such models are invaluable for abstracting the essence of the subject of inquiry, showing interrelationships, and facilitating analysis.

Mathematical models are also idealized representations, but they are expressed in terms of mathematical symbols and expressions. Such laws of physics as $F=m a$ and $E=m c^2$ are familiar examples. Similarly, the mathematical model of a business problem is the system of equations and related mathematical expressions that describe the essence of the problem. Thus, if there are $n$ related quantifiable decisions to be made, they are represented as decision variables (say, $x_1, x_2, \ldots . x_n$ ) whose respective values are to be determined. The appropriate measure of performance (e.g., profit) is then expressed as a mathematical function of these decision variables (for example, $P=3 x_1+2 x_2+\cdots+5 x_n$ ). This function is called the objective function. Any restrictions on the values that can be assigned to these decision variables are also expressed mathematically, typically by means of inequalities or equations (for example, $x_1+3 x_1 x_2+2 x_2 \leq 10$ ). Such mathematical expressions for the restrictions often are called constraints. The constants (namely, the coefficients and right-hand sides) in the constraints and the objective function are called the parameters of the model. The mathematical model might then say that the problem is to choose the values of the decision variables so as to maximize the objective function, subject to the specified constraints. Such a model, and minor variations of it, typifies the models used in OR.

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。