Posted on Categories:Cryptography, 密码学, 数学代写

数学代写|密码学代写Cryptography Theory代考|Security of RSA

如果你也在 怎样密码学Cryptography Theory 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。密码学Cryptography Theory 是对存在对抗行为的安全通信技术的实践和研究。 更广泛地说,密码学是关于构建和分析防止第三方或公众阅读私人信息的协议;信息安全的各个方面,如数据保密性、数据完整性、认证和不可抵赖性是现代密码学的核心。现代密码学存在于数学、计算机科学、电子工程、通信科学和物理学等学科的交叉点。密码学的应用包括电子商务、基于芯片的支付卡、数字货币、计算机密码和军事通信。

密码学Cryptography Theory 在现代很大程度上是基于数学理论和计算机科学实践的;密码学算法是围绕计算硬度假设设计的,这使得这种算法在实际操作中很难被任何对手破解。虽然在理论上有可能破解一个设计良好的系统,但在实际操作中这样做是不可行的。因此,这种方案,如果设计得好,被称为 “计算安全”;理论上的进步(例如,整数分解算法的改进)和更快的计算技术要求这些设计被不断地重新评估,如果有必要的话,要进行调整。信息理论上的安全方案,即使有无限的计算能力也无法被破解,如一次性密码键盘,在实践中比理论上可被破解但计算上安全的最佳方案更难使用。

密码学Cryptography Theory 代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。 最高质量的密码学Cryptography Theory 作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此密码学Cryptography Theory 作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试,包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您,创造模拟试题,提供所有的问题例子,以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试,我们都能帮助您!

在不断发展的过程中,avatest™如今已经成长为论文代写,留学生作业代写服务行业的翘楚和国际领先的教育集团。全体成员以诚信为圆心,以专业为半径,以贴心的服务时刻陪伴着您, 用专业的力量帮助国外学子取得学业上的成功。

•最快12小时交付 

•200+ 英语母语导师 

•70分以下全额退款

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

我们在数学Mathematics代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在密码学Cryptography Theory 代写方面经验极为丰富,各种密码学Cryptography Theory 相关的作业也就用不着 说。

数学代写|密码学代写Cryptography Theory代考|Security of RSA

数学代写|密码学Cryptography Theory代考|Security of RSA

There are two obvious ways of trying to break RSA. Indeed, these apply to any public-key cryptosystem. An attacker can either attempt to:

Decrypt a ciphertext without knowledge of the private key; or

Determine the private key directly from the public key.
Clearly the second attack is more powerful than the first, since an attacker who can perform the second attack can then decrypt subsequent ciphertexts. We now consider these two attack strategies.
DECRYPTING ACIPHERTEXT WITHOUT KNOWLEDGE OF THE PRIVATE KEY
Consider trying to decrypt an RSA ciphertext without the private key. Recall that we specified in Section 5.1.4 that a public-key encryption function should be a trapdoor one-way function. By assuming we do not know the private key, we are thus assuming we do not know the trapdoor. Thus, to assess the difficulty of determining the plaintext directly from the ciphertext, we need to assess the effectiveness of the one-way function which lies at the heart of RSA.

We need to take a closer look at the function being used for RSA encryption. The encryption process in RSA involves computing the function:
$$
C=P^e \bmod n .
$$
An attacker who observes $C$, and has knowledge of $e$ and $n$ (but not $d$ ), needs to work out what the value $P$ is. Computing $P$ from $C, e$, and $n$ is regarded as a hard problem (fortunately!), and thus the encryption function of RSA is believed to be a one-way function.

数学代写|密码学Cryptography Theory代考|RSA in practice

As with most of the cryptographic primitives we discuss, our explanation of RSA has been simplified in order to emphasise the main design aspects. It is essential that RSA is not deployed in any real implementation in exactly the way we have described. Rather, the latest best-practice guidelines outlined in the relevant standards should be consulted and followed. Perhaps the most critical alteration to the ‘textbook’ version of RSA which is often made in practice is to introduce randomisation into the encryption process. We now look at why this is important.
PROBABILISTIC ENCRYPTION
The version of RSA we presented in Section 5.2.2 is an example of deterministic encryption, which means that each time the same plaintext is encrypted using the same public key, the resulting ciphertext will be the same.

A significant disadvantage of deterministic public-key encryption is that the following attack is possible. Suppose a ciphertext sent to a known recipient has been observed by an attacker, who then proceeds as follows:

  1. The attacker makes an informed guess as to the value of the plaintext;
  2. The attacker encrypts the guessed plaintext using the known recipient’s public key; and
  3. If the result matches the observed ciphertext, then the guess was correct; if not, the attacker tries another guess of the plaintext.

This attack is particulary effective in situations where there are limited choices for the plaintext (for example, if the plaintext is a database entry from a limited range). We will refer to this attack as an informed exhaustive plaintext search.

Note this attack does not apply to symmetric encryption. This is because the encryption key is secret. Even if the attacker knows that the plaintext comes from a small set of potential values (perhaps even just two), the attacker cannot conduct this attack because any encryption key could have been used. This is why the attacker has to exhaustively search through all the potential symmetric keys instead.

数学代写|密码学代写Cryptography Theory代考|Security of RSA

密码学代写

数学代写|密码学Cryptography Theory代考|Security of RSA

有两种明显的破解RSA的方法。实际上,这些适用于任何公钥密码系统。攻击者可以尝试:

在不知道私钥的情况下解密密文;或

直接从公钥确定私钥。
显然,第二次攻击比第一次攻击更强大,因为可以执行第二次攻击的攻击者可以解密随后的密文。我们现在考虑这两种攻击策略。
在不知道私钥的情况下解密密文
考虑尝试在没有私钥的情况下解密RSA密文。回想一下,我们在第5.1.4节中指定,公钥加密函数应该是一个陷门单向函数。通过假设我们不知道私钥,我们也就假设我们不知道活板门。因此,为了评估直接从密文中确定明文的难度,我们需要评估RSA核心的单向函数的有效性。

我们需要仔细研究RSA加密所使用的函数。RSA中的加密过程包括计算以下函数:
$$
C=P^e \bmod n .
$$
一个观察$C$并了解$e$和$n$(但不了解$d$)的攻击者需要计算出$P$的值是多少。从$C, e$计算$P$,而$n$被认为是一个难题(幸运的是!),因此RSA的加密函数被认为是单向函数。

数学代写|密码学Cryptography Theory代考|RSA in practice

与我们讨论的大多数加密原语一样,为了强调主要的设计方面,我们对RSA的解释进行了简化。RSA在任何实际实现中都不能完全按照我们所描述的方式进行部署,这一点很重要。相反,应参考并遵循相关标准中概述的最新最佳实践指南。在实践中,对RSA“教科书”版本最关键的改变可能是在加密过程中引入随机化。现在我们来看看为什么这很重要。
概率加密
我们在5.2.2节中介绍的RSA版本是确定性加密的一个例子,这意味着每次使用相同的公钥加密相同的明文时,产生的密文将是相同的。

确定性公钥加密的一个显著缺点是可能出现以下攻击。假设发送给已知接收者的密文已被攻击者观察到,然后攻击者进行如下操作:

攻击者对明文的值进行知情猜测;

攻击者使用已知接收者的公钥加密猜测的明文;和

如果结果与观察到的密文匹配,那么猜测是正确的;如果没有,则攻击者尝试对明文进行另一次猜测。

这种攻击在明文选项有限的情况下特别有效(例如,如果明文是来自有限范围的数据库条目)。我们将把这种攻击称为知情详尽明文搜索。

注意,这种攻击不适用于对称加密。这是因为加密密钥是保密的。即使攻击者知道明文来自一小部分潜在值(甚至可能只有两个),攻击者也无法进行这种攻击,因为任何加密密钥都可能被窃取

数学代写|密码学代写Cryptography代考

数学代写|密码学代写Cryptography代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Write a Reply or Comment

您的电子邮箱地址不会被公开。 必填项已用 * 标注