如果你也在 怎样代写图论Graph Theory 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。图论Graph Theory在数学和计算机科学领域,图论是对图的研究,涉及边和顶点之间的关系。它是一门热门学科,在计算机科学、信息技术、生物科学、数学和语言学中都有应用。
图论Graph Theory在数学和计算机科学领域,图论是对图的研究,涉及边和顶点之间的关系。它是一门热门学科,在计算机科学、信息技术、生物科学、数学和语言学中都有应用。近年来,图论已经成为各种学科的重要数学工具,从运筹学和化学到遗传学和语言学,从电气工程和地理到社会学和建筑。同时,它本身也作为一门有价值的数学学科出现。
图论Graph Theory代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。最高质量的图论Graph Theory作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此图论Graph Theory作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。
avatest™帮您通过考试
avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试,包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您,创造模拟试题,提供所有的问题例子,以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试,我们都能帮助您!
在不断发展的过程中,avatest™如今已经成长为论文代写,留学生作业代写服务行业的翘楚和国际领先的教育集团。全体成员以诚信为圆心,以专业为半径,以贴心的服务时刻陪伴着您, 用专业的力量帮助国外学子取得学业上的成功。
•最快12小时交付
•200+ 英语母语导师
•70分以下全额退款
想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。
数学代写|图论代写GRAPH THEORY代考|List colouring
In this section, we take a look at a relatively recent generalization of the concepts of colouring studied so far. This generalization may seem a little far-fetched at first glance, but it turns out to supply a fundamental link between the classical (vertex and edge) chromatic numbers of a graph and its other invariants.
Suppose we are given a graph $G=(V, E)$, and for each vertex of $G$ a list of colours permitted at that particular vertex: when can we colour $G$ (in the usual sense) so that each vertex receives a colour from its list? More formally, let $\left(S_v\right){v \in V}$ be a family of sets. We call a vertex colouring $c$ of $G$ with $c(v) \in S_v$ for all $v \in V$ a colouring from the lists $S_v$. The graph $G$ is called $k$-list-colourable, or $k$-choosable, if, for every family $\left(S_v\right){v \in V}$ with $\left|S_v\right|=k$ for all $v$, there is a vertex colouring of $G$ from the lists $S_v$. The least integer $k$ for which $G$ is $k$-choosable is the list-chromatic number, or choice number $\operatorname{ch}(G)$ of $G$.
List-colourings of edges are defined analogously. The least integer $k$ such that $G$ has an edge colouring from any family of lists of size $k$ is the list-chromatic index $\operatorname{ch}^{\prime}(G)$ of $G$; formally, we just set $\operatorname{ch}^{\prime}(G):=$ $\operatorname{ch}(L(G))$, where $L(G)$ is the line graph of $G$.
In principle, showing that a given graph is $k$-choosable is more difficult than proving it to be $k$-colourable: the latter is just the special case of the former where all lists are equal to ${1, \ldots, k}$. Thus,
$$
\operatorname{ch}(G) \geqslant \chi(G) \text { and } \operatorname{ch}^{\prime}(G) \geqslant \chi^{\prime}(G)
$$
for all graphs $G$.
In spite of these inequalities, many of the known upper bounds for the chromatic number have turned out to be valid for the choice number, too. Examples for this phenomenon include Brooks’s theorem and Proposition 5.2.2; in particular, graphs of large choice number still have subgraphs of large minimum degree. On the other hand, it is easy to construct graphs for which the two invariants are wide apart (Exercise 25). Taken together, these two facts indicate a little how far those general upper bounds on the chromatic number may be from the truth.
数学代写|图论代写GRAPH THEORY代考|Plane graphs
A plane graph is a pair $(V, E)$ of finite sets with the following properties (the elements of $V$ are again called vertices, those of $E$ edges):
(i) $V \subseteq \mathbb{R}^2$
(ii) every edge is an arc between two vertices;
(iii) different edges have different sets of endpoints;
(iv) the interior of an edge contains no vertex and no point of any other edge.
A plane graph $(V, E)$ defines a graph $G$ on $V$ in a natural way. As long as no confusion can arise, we shall use the name $G$ of this abstract graph also for the plane graph $(V, E)$, or for the point set $V \cup \cup E$; similar notational conventions will be used for abstract versus plane edges, for subgraphs, and so on. ${ }^1$
For every plane graph $G$, the set $\mathbb{R}^2 \backslash G$ is open; its regions are the faces of $G$. Since $G$ is bounded-i.e., lies inside some sufficiently large disc $D$-exactly one of its faces is unbounded: the face that contains $\mathbb{R}^2 \backslash D$. This face is the outer face of $G$; the other faces are its inner faces. We denote the set of faces of $G$ by $F(G)$.
图论代写
数学代写|图论代写GRAPH THEORY代考|Topological prerequisites
在本节中,我们简要回顾一些基本的拓扑定义和稍后需要的事实。所有这些事实(到目前为止)都有简单而众所周知的证据;有关来源,请参阅注释。由于这些证明不包含图论,我们在这里不再重复它们:事实上,我们的目的是精确地收集那些我们需要但不想证明的拓扑事实。稍后,所有的证明都将严格遵循这里所述的定义和事实(并由几何直觉指导,但不依赖于几何直觉),因此现在提供的材料将有助于将这些证明中的基本拓扑论证降至最低。
欧几里得平面上的直线段是$\mathbb{R}^2$的一个子集,对于不同的点$p, q \in \mathbb{R}^2$,其形式为${p+\lambda(q-p) \mid 0 \leqslant \lambda \leqslant 1}$。多边形是$\mathbb{R}^2$的一个子集,它是有限多个直线段的并集,并且同胚于单位圆$S^1$,即$\mathbb{R}^2$中距离原点1处的点的集合。这里,和后面一样,假设拓扑空间的任何子集都携带子空间拓扑。多边形弧是$\mathbb{R}^2$的一个子集,它是有限个直线段的并,并且同胚于闭单位区间$[0,1]$。在这种同胚下,0和1的像是这条多边形弧的端点,这条弧将它们连接起来并在它们之间运行。在本章中,我们将不使用“多边形弧”,而简单地说为“弧”。如果$P$是$x$和$y$之间的弧,我们用$\stackrel{\circ}{P}$表示点集$P \backslash{x, y}$,即$P$的内部。
设$O \subseteq \mathbb{R}^2$为开放集。通过$O$中的弧链接在$O$上定义了等价关系。相应的等价类再次打开;它们是$O$的区域。如果$O \backslash X$有多个区域,则称封闭集$X \subseteq \mathbb{R}^2$分隔$O$。集合$X \subseteq \mathbb{R}^2$的边界是所有点$y \in \mathbb{R}^2$的集合$Y$,使得$y$的每个邻域同时满足$X$和$\mathbb{R}^2 \backslash X$。注意,如果$X$是开放的,那么它的边界位于$\mathbb{R}^2 \backslash X$。
数学代写|图论代写GRAPH THEORY代考|Plane graphs
平面图是一对$(V, E)$有限集合,具有以下属性($V$的元素再次称为顶点,$E$边的元素):
(i) $V \subseteq \mathbb{R}^2$
(ii)每条边都是两个顶点之间的弧;
(iii)不同的边有不同的端点集合;
(iv)一条边的内部不包含任何顶点,也不包含任何其他边的点。
平面图形$(V, E)$以自然的方式在$V$上定义图形$G$。只要不引起混淆,我们也将这个抽象图的名称$G$用于平面图$(V, E)$或点集$V \cup \cup E$;类似的符号约定将用于抽象边与平面边、子图等。 ${ }^1$
对于每一个平面图$G$,集合$\mathbb{R}^2 \backslash G$是开放的;它的区域是$G$的面。因为$G$是有界的。它位于某个足够大的圆盘$D$中——它的一个面是无界的:包含$\mathbb{R}^2 \backslash D$的面。这个面是$G$的外面;其他的面是它的内面。我们用$F(G)$表示$G$的面集。
数学代写|图论代写GRAPH THEORY代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。