如果你也在 怎样代写抽样调查Survey sampling 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。抽样调查Survey sampling是数学工程这一广泛新兴领域中的一个自然组成部分。例如,我们可以断言,数学工程之于今天的数学系,就像数学物理之于一个世纪以前的数学系一样;毫不夸张地说,数学在诸如语音和图像处理、信息理论和生物医学工程等工程学科中的基本影响。
抽样调查Survey sampling是主流统计的边缘。这里的特殊之处在于,我们有一个具有某些特征的有形物体集合,我们打算通过抓住其中一些物体并试图对那些未被触及的物体进行推断来窥探它们。这种推论传统上是基于一种概率论,这种概率论被用来探索观察到的事物与未观察到的事物之间的可能联系。这种概率不被认为是在统计学中,涵盖其他领域,以表征我们感兴趣的变量的单个值之间的相互关系。但这是由调查抽样调查人员通过任意指定的一种技术从具有预先分配概率的对象群体中选择样本而创建的。
avatest™帮您通过考试
avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试,包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您,创造模拟试题,提供所有的问题例子,以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试,我们都能帮助您!
在不断发展的过程中,avatest™如今已经成长为论文代写,留学生作业代写服务行业的翘楚和国际领先的教育集团。全体成员以诚信为圆心,以专业为半径,以贴心的服务时刻陪伴着您, 用专业的力量帮助国外学子取得学业上的成功。
•最快12小时交付
•200+ 英语母语导师
•70分以下全额退款
统计代写|抽样调查代考Survey sampling代写|Global Empirical Studies
Fortunately, considerable empirical studies have been reported by ROYALL and CUMBERLAND (1978b, 1981a, 1981b, 1985) and also by WU and DENG (1983), in light of which the following brief comments seem useful concerning comparative performances of $v_0, v_1, v_2, v_{\hat{g}}, v_{\tilde{g}}, v_{r e g}, v_H, v_D, v_J$, and $v_{\text {gopt }}$ leaving out $v_L$, which is generally disapproved as a viable competitor.
Keeping in mind three key features namely, (1) linear trend, (2) zero intercept, and (3) increasing squared residuals with $x$ in the scatter diagram of $(x, y)$, ROYALL et al. studied appropriate actual populations including one with $N=393$ hospitals with $x$ as the number of beds and $y$ as the number of patients discharged in a particular month. They took $n=32$ for (1) extreme samples, (2) balanced samples with $|\bar{x}-\bar{X}|$ suitably bounded above, (3) SRSWOR samples, (4) best fit samples with a minimal discrepancy among sample- and populationbased cumulative distribution functions. WU and DENG (1983), however, considered only SRSWORs with $n=32$ from the same populations and also from a few others, purposely violating one or the other of the above three characteristics.
Two types of studies have been made. Simulating 1000 SRSWORs of $n=32$ from each population the values of $t_R$ and the above 10 variance estimators $v$, in general, are calculated. The MSE of $t_R$ is taken as
$$
M=\frac{1}{1000} \sum^{\prime}\left(\bar{t}R-\bar{Y}\right)^2 . $$ and the bias of $v$ is taken as $$ B=\frac{1}{1000} \sum^{\prime} v-M $$ and the root MSE of $v$ is taken as $$ R M=\left[\frac{1}{1000} \sum^{\prime}(v-M)^2\right]^{1 / 2} . $$ Each sum $\Sigma^{\prime}$ is over the 1000 simulated samples. Also, for each of the 1000 simulated samples the SZEs $\tau=\left(\bar{t}_R-\bar{Y}\right) / \sqrt{v}$ and the intervals $t_R \pm \tau{\alpha / 2} \sqrt{v}$ are calculated to examine the closeness of $t$ to $\tau$ in terms of mean, standard deviation, skewness, and kurtosis. The df of $t$ is taken as $n-1=31$.
With respect to RM,
(a) $v_{\text {gopt }}$ is found the best, with $v_{\hat{g}}, v_{\tilde{g}}, v_{\text {reg }}$ closely behind.
(b) Among $v_0, v_1, v_2$ the one closest to $v_{\text {gopt }}$ is found the best.
(c) $v_H$ is found to be close to $v_2$ and fairly good, but $v_D$ is found to be poor, and $v_J$ is found to be the worst.
统计代写|抽样调查代考Survey sampling代写|Conditional Empirical Studies
From these global studies, where the averages are taken over all of the 1000 simulated samples, it is apparent that different variance estimators may suit different purposes. For example, one with a small MSE may yield a poor coverage probability, while one with a coverage probability close to the nominal value may not be stable, bearing an unacceptably high MSE. To get over this anomaly, these investigators adopt a conditional approach, which seems to be promising.
In a variance estimator alternative to $v_0$ the term $\bar{x}$ occurs as a prominent factor and its closeness to or deviation from $X$ seems to be a crucial factor in determining its performance characteristics. This $\bar{x}$ is an ancillary statistic, that is, the distribution of $\bar{x}$ is free of $\underline{Y}$, and it seems proper to examine how each $v$ performs for a given value of $\bar{x}$ or over several disjoint intervals of values of $\bar{x}$. In other words, for conditional biases, conditional MSEs, and conditional confidence intervals, given $\bar{x}$ may be treated as suitable criteria for judging the relative performances of these variance estimators.
With this end in view, in their empirical studies ROYALL and CUMBERLAND (1978b, 1981a, 1981b, 1985) and Wu and DENG (1983) divided the 1000 simulated samples each of size $n=32$ into 20 groups of 50 each in increasing order of $\bar{x}$ values for the samples. Thus, the first 50 smallest $\bar{x}$ values are placed in the first group, the next 50 larger $\bar{x}$ values are taken in the second group, and so on. Then they calculate
(a) the average of $\bar{x}, A_{\bar{x}}=\frac{1}{50} \Sigma^{\prime} \bar{x}$ for respective groups
(b) the conditional MSE of $t_R$ within respective groups as $M_{\bar{x}}=\frac{1}{50} \Sigma^{\prime \prime}\left(\bar{t}R-\bar{Y}\right)^2$ (c) averages $v{\bar{x}}=\frac{1}{50} \Sigma^{\prime} v$ of each of the $v$ ‘s within respective groups where $\Sigma^{\prime}$ denotes summation over 50 samples within respective groups.
抽样调查代写
统计代写|抽样调查代考Survey sampling代写|Global Empirical Studies
幸运的是,ROYALL和CUMBERLAND (1978b, 1981a, 1981b, 1985)以及WU和DENG(1983)已经报道了大量的实证研究,鉴于此,以下简短的评论似乎对$v_0, v_1, v_2, v_{\hat{g}}, v_{\tilde{g}}, v_{r e g}, v_H, v_D, v_J$的比较性能有用,而$v_{\text {gopt }}$省略了$v_L$,它通常不被认为是一个可行的竞争对手。
ROYALL等人考虑到三个关键特征,即(1)线性趋势,(2)零截距,(3)$(x, y)$散点图中$x$的残差平方增加,研究了适当的实际人群,包括$N=393$医院,其中$x$为床位数,$y$为特定月份的出院患者数。他们取$n=32$作为(1)极端样本,(2)平衡样本,$|\bar{x}-\bar{X}|$适当地在上面有界,(3)SRSWOR样本,(4)样本和基于总体的累积分布函数之间差异最小的最佳拟合样本。然而,WU和DENG(1983)只考虑了来自同一种群的$n=32$的SRSWORs,也考虑了来自少数其他种群的SRSWORs,故意违反了上述三个特征中的一个或另一个。
已经进行了两种类型的研究。模拟1000个SRSWORs $n=32$ 从每个种群的值 $t_R$ 和上面的10个方差估计量 $v$,一般来说,都是经过计算的。的MSE $t_R$ 被认为是
$$
M=\frac{1}{1000} \sum^{\prime}\left(\bar{t}R-\bar{Y}\right)^2 . $$ 和偏见 $v$ 被认为是 $$ B=\frac{1}{1000} \sum^{\prime} v-M $$ 的根MSE $v$ 被认为是 $$ R M=\left[\frac{1}{1000} \sum^{\prime}(v-M)^2\right]^{1 / 2} . $$ 每一笔 $\Sigma^{\prime}$ 超过1000个模拟样本。此外,对于1000个模拟样本中的每个样本,SZEs $\tau=\left(\bar{t}R-\bar{Y}\right) / \sqrt{v}$ 还有间隔 $t_R \pm \tau{\alpha / 2} \sqrt{v}$ 都是用来检查的 $t$ 到 $\tau$ 在均值,标准差,偏度和峰度方面。的df $t$ 被认为是 $n-1=31$. 对于RM, (a) $v{\text {gopt }}$ 是找到了最好的,用了 $v_{\hat{g}}, v_{\tilde{g}}, v_{\text {reg }}$ 紧跟在后面。
(b)其中 $v_0, v_1, v_2$ 最接近的一个 $v_{\text {gopt }}$ 是找到了最好的。
(c) $v_H$ 被发现接近吗 $v_2$ 而且相当不错,但是 $v_D$ 被发现是贫穷的,而 $v_J$ 是最糟糕的。
统计代写|抽样调查代考Survey sampling代写|Conditional Empirical Studies
从这些全球研究中,所有1000个模拟样本都取平均值,很明显,不同的方差估计器可能适合不同的目的。例如,具有较小MSE的系统可能产生较差的覆盖概率,而覆盖概率接近标称值的系统可能不稳定,具有不可接受的高MSE。为了克服这种异常现象,这些研究人员采用了一种有条件的方法,这种方法似乎很有希望。
在替代$v_0$的方差估计器中,术语$\bar{x}$是一个突出的因素,它与$X$的接近度或偏差似乎是决定其性能特征的关键因素。这个$\bar{x}$是一个辅助统计量,也就是说,$\bar{x}$的分布没有$\underline{Y}$,检查每个$v$对于给定的$\bar{x}$值或多个不相交的$\bar{x}$值的表现似乎是合适的。换句话说,对于条件偏差、条件mse和条件置信区间,给定$\bar{x}$可以作为判断这些方差估计器的相对性能的合适标准。
为此,ROYALL和CUMBERLAND (1978b, 1981a, 1981b, 1985)以及Wu和DENG(1983)在他们的实证研究中将1000个大小为$n=32$的模拟样本按样本值$\bar{x}$的递增顺序分为20组,每组50个。因此,前50个最小的$\bar{x}$值放在第一组中,后50个较大的$\bar{x}$值放在第二组中,依此类推。然后他们计算
(a)各组别的平均值$\bar{x}, A_{\bar{x}}=\frac{1}{50} \Sigma^{\prime} \bar{x}$
(b)各组内$t_R$的条件均方差为$M_{\bar{x}}=\frac{1}{50} \Sigma^{\prime \prime}\left(\bar{t}R-\bar{Y}\right)^2$ (c)各组内各$v$的平均$v{\bar{x}}=\frac{1}{50} \Sigma^{\prime} v$,其中$\Sigma^{\prime}$为各组内50个样本的总和。
统计代写|抽样调查代考Survey sampling代写 请认准exambang™. exambang™为您的留学生涯保驾护航。
在当今世界,学生正面临着越来越多的期待,他们需要在学术上表现优异,所以压力巨大。
avatest.org 为您提供可靠及专业的论文代写服务以便帮助您完成您学术上的需求,让您重新掌握您的人生。我们将尽力给您提供完美的论文,并且保证质量以及准时交稿。除了承诺的奉献精神,我们的专业写手、研究人员和校对员都经过非常严格的招聘流程。所有写手都必须证明自己的分析和沟通能力以及英文水平,并通过由我们的资深研究人员和校对员组织的面试。
其中代写论文大多数都能达到A,B 的成绩, 从而实现了零失败的目标。
这足以证明我们的实力。选择我们绝对不会让您后悔,选择我们是您最明智的选择!