Posted on Categories:Graph Theory, 图论, 数学代写

数学代写|图论代考GRAPH THEORY代写|MA57500

如果你也在 怎样代写图论Graph Theory 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。图论Graph Theory有趣的部分原因在于,图可以用来对某些问题中的情况进行建模。这些问题可以在图表的帮助下进行研究(并可能得到解决)。因此,图形模型在本书中经常出现。然而,图论是数学的一个领域,因此涉及数学思想的研究-概念和它们之间的联系。我们选择包含的主题和结果是因为我们认为它们有趣、重要和/或代表主题。

图论Graph Theory通过熟悉许多过去和现在对图论的发展负责的人,可以增强对图论的欣赏。因此,我们收录了一些关于“图论人士”的有趣评论。因为我们相信这些人是图论故事的一部分,所以我们在文中讨论了他们,而不仅仅是作为脚注。我们常常没有认识到数学是一门有生命的学科。图论是人类创造的,是一门仍在不断发展的学科。

图论Graph Theory代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。最高质量的图论Graph Theory作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此图论Graph Theory作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试,包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您,创造模拟试题,提供所有的问题例子,以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试,我们都能帮助您!

在不断发展的过程中,avatest™如今已经成长为论文代写,留学生作业代写服务行业的翘楚和国际领先的教育集团。全体成员以诚信为圆心,以专业为半径,以贴心的服务时刻陪伴着您, 用专业的力量帮助国外学子取得学业上的成功。

•最快12小时交付 

•200+ 英语母语导师 

•70分以下全额退款

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

数学代写|图论代考GRAPH THEORY代写|MA57500

数学代写|图论代写GRAPH THEORY代考|Connected Separable Graphs

A connected graph is separable if $G$ has at least one cut vertex, otherwise $G$ is nonseparable. Thus a nonseparable graph is 2-connected. However, $K_1$ and $K_2$ are considered nonseparable. A maximal nonseparable connected subgraph of $G$ is called a block of $G$. Thus a block of a connected graph $G$ of $n \geq 2$ vertices is either a biconnected component or a bridge of $G$. We now have the following lemma.

The blocks and cut vertices in $G$ can be represented by a tree $T$, called the $B C$-tree of $G$. In $T$ each block is represented by a $B$-node and each cut vertex of $G$ is represented by a $C$-node. The graph in Fig. 3.11(a) has the blocks $B_1, B_2, \ldots, B_9$ depicted in Fig.3.11(b). The $B C$-tree $T$ of the plane graph $G$ in Fig.3.11(a) is depicted in Fig.3.11(c), where each $B$-node is represented by a rectangle and each $C$-node is represented by a circle.

2-Connected Graphs
The reliability of a computer network can be increased by providing alternative paths between workstations. In fact the connectivity of a graph is a measure of number of alternative paths. If the graph is 1-connected then there is a path between any two workstations. We will show that there are two alternative paths between any two workstations in a 2-connected network, as in Theorem 3.4.5 below due to Whitney [3]. Two paths $P_1$ and $P_2$ with the same end vertices are internally disjoint if $P_1$ and $P_2$ do not share any internal vertex.

Theorem 3.4.5 A graph $G$ of three or more vertices is 2-connected if and only if there are two internally disjoint paths between every pair of vertices in $G$.

Proof Sufficiency Assume that there are two internally disjoint paths between every pair $u, v \in V(G)$. Then deletion of one vertex cannot separate $u$ from $v$. Since this condition is valid for every pair of vertices in $G, G$ is 2-connected.

Necessity Assume that $G$ is 2 -connected. We show that $G$ has two internally disjoint paths between every pair $u, v \in V(G)$ by induction on the length $l$ of a shortest path between $u$ and $v$.

数学代写|图论代写GRAPH THEORY代考Ear Decomposition

An ear of a graph $G$ with $\delta(G)=2$ is a maximal path with distinct end vertices whose internal vertices have degree 2 in $G$. Note that an edge $(u, v), u \neq v$ in $G$ with $d_G(u) \geq 3$ and $d_G(v) \geq 3$ is also an ear of $G$. An ear decomposition of $G$ is a decomposition $P_0, \ldots, P_k$ of edges such that $P_0$ is a cycle and $P_i$ for $i \geq 1$ is an ear of the graph induced by $P_0 \cup \cdots P_i$. An ear decomposition $P_0, P_1, \ldots, P_7$ of a graph is illustrated in Fig. 3.14 where the ear $P_6$ is an edge. Whitney [3] in 1932 gave a characterization of a 2-connected graph in terms of ear decomposition as in the following theorem.

Theorem 3.4.8 A graph $G$ has an ear decomposition if and only if $G$ is 2-connected.
Proof Necessity Assume that $G$ has an ear decomposition $P_0, P_1, \ldots, P_k$. By definition of ear decomposition $P_0$ is a cycle, which is 2-connected. Assume that $G_i=P_0 \cup \cdots \cup P_i$ is biconnected. We now show that $G_{i+1}=G_i \cup P_{i+1}$ is biconnected. $G_i$ is biconnected and the two end vertices of $P_{i+1}$ are on $G_i$. Then adding $P_{i+1}$ to $G_i$ will not introduce any cut vertex in $G_{i+1}$, and hence $G_{i+1}$ is biconnected.
Sufficiency We give a constructive proof. Assume that $G$ is 2 -connected. Then $G$ has a cycle. Let $C$ be a cycle in $G$. We choose $C$ as $P_0=G_0$. If $G_0 \neq G$, we can choose an edge $(u, v)$ of $G-E\left(P_0\right)$ and an edge $(x, y) \in E\left(P_0\right)$. Since $G$ is 2-connected, $(u, v)$ and $(x, y)$ lie on a cycle $C^{\prime}$ by Lemma 3.4.7. Let $P$ be a path in $C^{\prime}$ that contains $(u, v)$ and exactly two vertices of $G_0$. We choose $P$ as $P_1$. Clearly $G_1=P_0 \cup P_1$ is biconnected and $P_1$ is an ear of $G_1$. Let $G_i$ be the graph obtained by successively adding ears $P_1, P_2, \ldots, P_i$. We can find an ear $P_{i+1}$ similarly as we found $P_1$. The process ends only by absorbing all edges of $G$.

数学代写|图论代考GRAPH THEORY代写|MA57500

图论代写

数学代写|图论代写GRAPH THEORY代考|Connected Separable Graphs

连通图是可分离的,如果$G$至少有一个切割顶点,否则$G$不可分离。因此不可分图是2连通的。然而,$K_1$和$K_2$被认为是不可分离的。$G$的最大不可分连通子图称为$G$的块。因此,由$n \geq 2$顶点组成的连通图$G$中的一个块要么是双连通的组件,要么是$G$的桥。现在我们有了下面的引理。

$G$中的块和切割顶点可以用树$T$表示,称为$G$的$B C$ -tree。在$T$中,每个块由一个$B$ -节点表示,$G$的每个切割顶点由一个$C$ -节点表示。图3.11(a)中的图中有图3.11(b)中所示的块$B_1, B_2, \ldots, B_9$。图3.11(a)中平面图$G$的$B C$ -tree $T$如图3.11(c)所示,其中每个$B$ -节点用矩形表示,每个$C$ -节点用圆形表示。

二连通图
计算机网络的可靠性可以通过在工作站之间提供可选路径来提高。事实上,图的连通性是可选路径数量的度量。如果图是1连通的,那么任意两个工作站之间都有一条路径。我们将证明,在2连通网络中,任意两个工作站之间存在两条可选路径,如下面Whitney[3]的定理3.4.5所示。如果$P_1$和$P_2$不共享任何内部顶点,则具有相同端点的两条路径$P_1$和$P_2$在内部不相交。

定理3.4.5有三个或三个以上顶点的图$G$是2连通的,当且仅当$G$中每对顶点之间有两条内部不相交的路径。

假设每一对之间有两条内部不相交的路径$u, v \in V(G)$。那么删除一个顶点不能把$u$和$v$分开。因为这个条件对$G, G$中的每一对顶点都是2连通的。

假设$G$是2连接的。我们通过对$u$和$v$之间最短路径的长度$l$的归纳,证明了$G$在每对$u, v \in V(G)$之间有两条内部不相交的路径。

数学代写|图论代写GRAPH THEORY代考Ear Decomposition

具有$\delta(G)=2$的图$G$的ear是具有不同端点的最大路径,其内部顶点在$G$中的度数为2。请注意,$G$与$d_G(u) \geq 3$和$d_G(v) \geq 3$的边$(u, v), u \neq v$也是$G$的边。$G$的耳分解是对边的分解$P_0, \ldots, P_k$,使得$P_0$是一个循环,$i \geq 1$的$P_i$是$P_0 \cup \cdots P_i$生成的图的耳。图3.14示出图的耳分解$P_0, P_1, \ldots, P_7$,其中耳$P_6$是一条边。Whitney[3]在1932年用耳分解给出了2连通图的一个表征,如下面的定理所示。

定理3.4.8图$G$有耳分解当且仅当$G$是2连通的。
证明必要性假设$G$有耳朵分解$P_0, P_1, \ldots, P_k$。根据耳分解的定义$P_0$是一个2连通的循环。假设$G_i=P_0 \cup \cdots \cup P_i$是双连接的。现在我们证明$G_{i+1}=G_i \cup P_{i+1}$是双连接的。$G_i$是双连通的,并且$P_{i+1}$的两个端点都在$G_i$上。然后将$P_{i+1}$添加到$G_i$将不会在$G_{i+1}$中引入任何切割顶点,因此$G_{i+1}$是双连接的。
我们给出建设性的证明。假设$G$是2连接的。然后$G$有一个循环。让$C$成为$G$的一个循环。我们选择$C$作为$P_0=G_0$。如果是$G_0 \neq G$,我们可以选择$G-E\left(P_0\right)$的边$(u, v)$和$(x, y) \in E\left(P_0\right)$的边。由于$G$是2连通的,根据引理3.4.7,$(u, v)$和$(x, y)$位于一个循环$C^{\prime}$上。设$P$是$C^{\prime}$中的一条路径,它包含$(u, v)$和$G_0$的两个顶点。我们选择$P$作为$P_1$。显然$G_1=P_0 \cup P_1$是双连接的,$P_1$是$G_1$的一个分支。设$G_i$为连续加耳$P_1, P_2, \ldots, P_i$得到的图。我们可以像找到$P_1$一样找到耳朵$P_{i+1}$。该过程仅在吸收$G$的所有边时结束。

数学代写|图论代写GRAPH THEORY代考

数学代写|图论代写GRAPH THEORY代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

Write a Reply or Comment

您的电子邮箱地址不会被公开。 必填项已用 * 标注