Posted on Categories:Data visualization, 数据可视化, 数据科学代写, 统计代写, 统计代考

## avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试，包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您，创造模拟试题，提供所有的问题例子，以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试，我们都能帮助您！

•最快12小时交付

•200+ 英语母语导师

•70分以下全额退款

## 数据科学代写|数据可视化代写Data Visualization代考|Relative Frequency and Percent Frequency

A frequency distribution, such as the one in Figure $5.4$, shows the number (count) of items in each of several nonoverlapping bins. However, we are often interested in the proportion, or percentage, of items in each bin. The relative frequency of a bin equals the fraction or proportion of items belonging to a class. For a data set with $n$ observations, the relative frequency of each bin can be determined as follows:
$$\text { Relative frequency of a bin }=\frac{\text { Frequency of the bin }}{n}$$
Often a relative frequency is expressed as a percentage. The percent frequency of a bin is the relative frequency multiplied by 100 . To obtain a percent frequency distribution for the data in the Pop file, we continue from the PivotTable in Figure $5.4$ with the following steps:
Step 1. Select any cell in the Count of Soft Drink Purchase column of the PivotTable (any cell in range B3:B8)
Step 2. When the PivotTable Fields task pane appears:
In the Values area, select the triangle to the right of Count of Soft Drink
Purchase Count of Soft Drink Purchase
Select Value Field Settings… from the list of options.
Step 3. When the Value Field Settings dialog box appears:
Click the Show Values As tab and in the box below Show values as select $\%$ of Grand Total

Figure $5.6$ shows the result of the preceding steps. The percent frequency for Coca-Cola is $190 / 500=0.38=38 \%$, the percent frequency for Pepsi is $130 / 500=0.26=16 \%$, and so on. We can also note that $38 \%+26 \%+16 \%=80 \%$ of the purchases were the top three soft drinks.
A percent frequency distribution can be used to provide estimates of the relative likelihoods of different values for a random variable. So, by constructing a percent frequency distribution from observations of a random variable, we can estimate the probability distribution that characterizes its variability. For example, suppose that a concession stand has determined it will procure a total of 12,000 ounces of soft drinks for an upcoming concert, but it is uncertain how to divide this total over the individual soft drink types. However, if the data in the Pop file are representative of the concession stand’s customer population, the manager can use this information to determine appropriate volumes of each type of soft drink. For example, the data suggest that the manager should procure $12,000 \times 0.38=4,560$ ounces of Coca-Cola.

## 数据科学代写|数据可视化代写Data Visualization代考|Visualizing Distributions of Quantitative Data

As with categorical data, we can create frequency distributions for quantitative data, but we must be more careful in defining the nonoverlapping bins to be used in the frequency distribution. Recall that for categorical data, a frequency distribution’s bins are based on the different categories. For quantitative data, each bin in the frequency distribution is based on the range of values that the bin contains.

To create a frequency distribution for quantitative data, three features need to be defined:

1. The number of nonoverlapping bins
2. The width (numerical range) of each bin
3. The range spanned by the set of bins
Excel possesses functionality that automatically defines each of these features. To demonstrate, consider a data set that contains the age at death for 700 individuals. Figure $5.8$ displays a portion of this data, contained in the file Death. The following steps construct the histogram in Figure $5.9$ illustrating the distribution of the ages at death.
Step 1. Select cells A1:A701
Step 2. Click the Insert tab on the Ribbon
Step 3. Click the Insert Statistic Chart button $\mathbb{l l}^{\vee} \vee$ in the Charts group
When the list of statistic charts appears, select Histogram 1 Hh

## 数据科学代写数据可视化代写Data Visualization代考|Relative Frequency and Percent Frequency

Relative frequency of a bin $=\frac{\text { Frequency of the bin }}{n}$

$130 / 500=0.26=16 \%$ ，等等。我们还可以住意到 $38 \%+26 \%+16 \%=80 \%$ 购买量中排名前三的软饩料。

## 数据科学代写|数据可视化代写Data Visualization代考|Visualizing Distributions of Quantitative Data

1. 非重腚 bin 的数量
2. 每个 bin 的宽度（数值范围）
3. 由一组 bin 跨越的范围
Excel 具有自动定义这些特征中的每一个的功能。为了演示，考虑一个包含 700 个人的死亡年龄的数据集。数字 $5.8$ 显示该 数据的一部分，包含在文件 Death 中。下面的步骙构建了图中的直方图 $5.9$ 说明死亡年齡的分布。
步骤 1. 选择单元格 Al:A701
步骤 2. 单击功能区上的揷入选项卡
步骤 3. 单击揷入统计图表㧍铒 $\vee \vee \vee$ 在图表组
中出现统计图表列表时，选译直方图 $1 \mathrm{Hh}$

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Posted on Categories:Data visualization, 数据可视化, 数据科学代写, 统计代写, 统计代考

## avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试，包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您，创造模拟试题，提供所有的问题例子，以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试，我们都能帮助您！

•最快12小时交付

•200+ 英语母语导师

•70分以下全额退款

## 数据科学代写|数据可视化代写Data Visualization代考|Custom Color Using the Hsl Color System

In the previous examples, we used Excel’s color palettes to demonstrate the various types of color schemes. However, it is also possible to customize the colors used in a chart. We can directly control the hue, saturation, and luminance (HSL) in Excel through the Colors dialog box, which allows for control of each of these three color characteristics in the following ways.
Hue: The color’s hue expressed as an integer in the range 0 to 255 . The primary and secondary colors of the RGB primary color mode using fixed values for saturation and luminance are:
$\begin{array}{rc}\text { Color } & \text { Hue } \ \text { Red } & 0 \ \text { Yellow } & 40 \ \text { Green } & 80 \ \text { Cyan } & 120 \ \text { Blue } & 160 \ \text { Magenta } & 200\end{array}$
In Figure 4.15, we illustrate changing hues with fixed levels of saturation and luminance in the Colors dialog box.

As the value of the Hue parameter increases, the indicator $a_a^a=$ moves horizontally from left to right across the color spectrum control in the Colors dialog box to indicate the selected hue.
Sat: The color’s saturation expressed as an integer in the range 0 to 255 ; higher Sat: values correspond with more intense or pure color, and lower Sat: values produce increasingly gray shades. Setting Sat: to 0 results in a gray tone regardless of the hue and luminance settings. In Figure 4.16, we illustrate changing saturation with fixed levels of hue and luminance in the Colors dialog box.

## 数据科学代写|数据可视化代写Data Visualization代考|Common Mistakes in the Use of Color in Data Visualization

Although color is a powerful tool for communicating with charts, it is often misused. When misused, it may distort the intended message or distract the audience. In this section, we discuss several common mistakes committed when using color in a data visualization.
Unnecessary Color
Data visualization experts agree that color should only be used when it communicates something that no other aspect of a chart communicates to the audience. Figure $4.21$ shows the number of units sold (in thousands) for seven top-selling midsize sedans.

In this chart, the audience can discern which column corresponds to each of the models through the colors of the columns and the legend. Although this communicates the data, we can accomplish the same communication with a chart that creates less cognitive load by avoiding the use of multiple colors. If we clearly label the columns on the horizontal axis, then there is no need for a different color for each model of sedan.

## 数据科学代写|数据可视化代写Data Visualization代考|Custom Color Using the Hsl Color System

颜色  色调   红色的 0  黄色 40  绿色的 80  青色 120  蓝色的 160  品红 200

Sat：颜色的饱和度，以 0 到 255 范围内的整数表示；较高的 Sat：值对应于更强烈或更纯的颜色，较低的 Sat：值产生越来越多的灰色阴影。无论色调和亮度设置如何，将 Sat: 设置为 0 都会产生灰色调。在图 4.16 中，我们说明了在颜色对话框中使用固定级别的色调和亮度来改变饱和度。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Posted on Categories:Data visualization, 数据可视化, 数据科学代写, 统计代写, 统计代考

## avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试，包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您，创造模拟试题，提供所有的问题例子，以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试，我们都能帮助您！

•最快12小时交付

•200+ 英语母语导师

•70分以下全额退款

## 数据科学代写|数据可视化代写Data Visualization代考|Color and Perception

One of the strengths of color as a means of communication through charts is its ability to evoke emotions and reactions, create moods, and attract attention to key aspects of the chart. Understanding how color is perceived enables us to use it to more effectively deliver our message. Failure to understand how color is perceived can lead to its misuse, which can result in confusion and unnecessary clutter. In this section, we discuss important considerations in the use of color to effectively communicate through charts.

## 数据科学代写|数据可视化代写Data Visualization代考|Attributes of Color: Hue, Saturation, and Luminance

One of the three attributes of a color is its hue, which is the base of a color. The primary hues are the three hues that cannot be mixed or formed by any combination of other hues, and all other hues are derived from these three hues. Excel uses the red, green, blue (RGB) color model with primary hues red, green, and blue. Combinations of these hues create other secondary colors, such as orange, yellow, and violet, and various tertiary colors. The relationships between primary, secondary, and tertiary colors are commonly displayed on a color wheel. Figure $4.2$ shows the RGB model and RGB color wheel.

In addition to hue, colors are commonly distinguished by saturation and luminance. Saturation refers to the amount of gray in a color and determines the intensity or purity of the hue in the color. A completely pure hue has no grayness and is referred to as $100 \%$ saturated. As the saturation level decreases, the hue becomes less intense and more grayish. At 0\% saturation, all hues become gray. Figure $4.3$ shows the primary hues in the RGB primary color model at various levels of saturation.

Combinations of hue, luminance, and saturation determine base, brightness, and grayness of a color. As we will see later in this chapter, Excel allows you to control the hue, saturation, and luminance of the color of an Excel object.

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Posted on Categories:Data visualization, R语言, 数据可视化, 统计代写

## 统计代写|数据可视化代考DATA VISUALIZATION代考|BIOF439 Using Excel Default Settinqs for Charts

avatest.org数据可视化Data visualization代写，免费提交作业要求， 满意后付款，成绩80\%以下全额退款，安全省心无顾虑。专业硕 博写手团队，所有订单可靠准时，保证 100% 原创。avatest.org™， 最高质量的数据可视化Data visualization作业代写，服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面，考虑到同学们的经济条件，在保障代写质量的前提下，我们为客户提供最合理的价格。 由于统计Statistics作业种类很多，同时其中的大部分作业在字数上都没有具体要求，因此数据可视化Data visualization作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

avatest.org™ 为您的留学生涯保驾护航 在统计代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计代考服务。我们的专家在数据可视化Data visualization代写方面经验极为丰富，各种数据可视化Data visualization相关的作业也就用不着 说。

## 统计代写|数据可视化代考DATA VISUALIZATION代考|Using Excel Default Settinqs for Charts

Microsoft Excel allows for the creation of a variety of charts and tables to visualize data. However, a common mistake is to use the default output from Excel without considering changes to the design and format of the visualizations it produces. Excel’s default settings are counter to many of the suggestions covered in this chapter (and the rest of this textbook) for creating good data visualizations. Consider Figure 3.34. This column chart, which was produced using Excel, shows revenues for eight retail store locations in Texas. The company is interested in comparing revenues by location, and specifically in examining the relative performance of the store located in Laredo because this store has recently had a change in management.

Figure $3.34$ suffers from several flaws that prevent it from being an effective data visualization. The data-ink ratio for Figure $3.34$ is low, so we should consider ways of decluttering the figure. Examining Figure $3.34$ shows that the chart uses ink in several ways that are not useful in conveying the data. The gridlines used in this chart are not particularly useful, so they can be removed. We see that Excel automatically titles the chart “Annual Revenue” and uses a legend with “Annual Revenue.” This is redundant information, and at least one of these labels should be removed. The following steps can be used to declutter the default chart produced by Excel, increase the data-ink ratio, and make the chart more meaningful to the audience.
Step 1. Click anywhere on the chart in the file RetailRevenueChart
Step 2. Click the Chart Elements button $t$
Deselect the check box for Gridlines
Deselect the check box for Legend

## 统计代写|数据可视化代考DATA VISUALIZATION代考|Too Many Attributes

In Section 3-1, we discuss the importance of using preattentive attributes in data visualizations to make them easy to understand by the audience. However, using too many preattentive attributes in the same visualization can cause confusion for the audience. Consider again the case of Stanley Consulting Group. The company wants to examine how consultant characteristics such as job title, length of time with the company, and highest educational degree attained are related to the amount of billable hours filed by that consultant. Figure $3.36$ attempts to show this information.

All of the information the company wants to consider is shown in Figure 3.36: the number of billable hours for each consultant (on the vertical axis), the length of time at the company (on the horizontal axis), the consultant’s job title (indicated by the color of the marker in the chart), and the highest degree attained by the consultant (indicated by the shape of the marker in the chart). Figure $3.36$ uses several preattentive attributes from Section 3-1 including spatial positioning, shape, and color. However, because we are using many different preattentive attributes, this chart is difficult for an audience to process. It requires the audience to scan back and forth between the markers in the chart, the legends, and the vertical and horizontal axes. Therefore, this is probably not a particularly useful chart.

A better chart than what is shown in Figure $3.36$ would concentrate on examining fewer relationships and using fewer preattentive attributes. The exact choice of which features to show on the chart depends on the goals of the chart and needs of the audience. If it is more important to examine the relationship between billable hours, length of time at the company, and the job title of the consultant, then a chart such as the one shown in Figure $3.37$ is preferred.

## 统计代写|数据可视化代考DATA VISUALIZATION代考|Using Excel Default Settinqs for Charts

Microsoft Excel 允许创建各种图表和表格来可视化数据。但是，一个常见的错误是使用 Excel 的默认输出，而不考虑对其生成的可视化的设计和格式进行更改。Excel 的默认设置与本章（以及本教科书的其余部分）中关于创建良好数据可视化的许多建议背道而驰。考虑图 3.34。这个使用 Excel 生成的柱形图显示了德克萨斯州八个零售店位置的收入。该公司有兴趣按位置比较收入，特别是检查位于拉雷多的商店的相对业绩，因为这家商店最近发生了管理层变动。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Posted on Categories:Data visualization, R语言, 数据可视化, 统计代写

## 统计代写|数据可视化代考DATA VISUALIZATION代考|BAN271 Common Mistakes in Data Visualization Design

avatest.org数据可视化Data visualization代写，免费提交作业要求， 满意后付款，成绩80\%以下全额退款，安全省心无顾虑。专业硕 博写手团队，所有订单可靠准时，保证 100% 原创。avatest.org™， 最高质量的数据可视化Data visualization作业代写，服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面，考虑到同学们的经济条件，在保障代写质量的前提下，我们为客户提供最合理的价格。 由于统计Statistics作业种类很多，同时其中的大部分作业在字数上都没有具体要求，因此数据可视化Data visualization作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

avatest.org™ 为您的留学生涯保驾护航 在统计代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计代考服务。我们的专家在数据可视化Data visualization代写方面经验极为丰富，各种数据可视化Data visualization相关的作业也就用不着 说。

## 统计代写|数据可视化代考DATA VISUALIZATION代考|Wrong Type of Visualization

The best type of chart or table to use for data visualization strongly depends on the audience that will view the visualization as well as the insights or story that is to be told through the visualization. Throughout this textbook, we provide best practices for designing effective data visualizations, but many of the decisions related to which chart to use and some aspects of the design will depend on the situation and goal of the visualization. In this section, we use the concepts presented in this chapter to discuss several situations for which one type of visualization is preferred over another. However, we must keep in mind that the most effective visualization depends on the needs of the audience and the message we are trying to convey.
If the goal of the visualization is to convey precise numerical values, then it is often preferable to use a table rather than a chart. Because it is more difficult for an audience to make relative comparisons on the preattentive attribute of shape than on the preattentive attribute of length, bar or column charts are generally preferred over pie charts. However, there are cases for which the most appropriate type of visualization depends on the goal of the visualization and is not always obvious.

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Posted on Categories:Data visualization, R语言, 数据可视化, 统计代写

## 统计代写|数据可视化代考DATA VISUALIZATION代考|CS7295 Data-Ink Ratio

avatest.org数据可视化Data visualization代写，免费提交作业要求， 满意后付款，成绩80\%以下全额退款，安全省心无顾虑。专业硕 博写手团队，所有订单可靠准时，保证 100% 原创。avatest.org™， 最高质量的数据可视化Data visualization作业代写，服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面，考虑到同学们的经济条件，在保障代写质量的前提下，我们为客户提供最合理的价格。 由于统计Statistics作业种类很多，同时其中的大部分作业在字数上都没有具体要求，因此数据可视化Data visualization作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

avatest.org™ 为您的留学生涯保驾护航 在统计代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计代考服务。我们的专家在数据可视化Data visualization代写方面经验极为丰富，各种数据可视化Data visualization相关的作业也就用不着 说。

## 统计代写|数据可视化代考DATA VISUALIZATION代考|Data-Ink Ratio

The concepts of preattentive attributes and Gestalt principles are valuable in understanding features that can be used to visualize data and how visualizations are processed by the mind. However, it is easy to overuse any of the features and diminish the effectiveness of the feature to differentiate and draw attention. A guiding principle for effective data visualizations is that the table or graph should illustrate the data to help the audience generate insights and understanding. The table or graph should not be so cluttered as to disguise the data or be difficult to interpret.

A common way of thinking about this principle is the idea of maximizing the data-ink ratio. The data-ink ratio measures the proportion of “data-ink” to the total amount of ink used in a table or chart, where data-ink is the ink used that is necessary to convey the meaning of the data to the audience. Non-data-ink is ink used in a table or chart that serves no useful purpose in conveying the data to the audience. Note in Figure 3.11a that the pie chart uses color and a legend to differentiate between the eight managers. The bar chart in this figure communicates the same information without either of these features, and so has a higher data-ink ratio.

Let us consider the case of Diaphanous Industries, a firm that produces fine silk clothing products. Diaphanous is interested in tracking the sales of one of its most popular items, a particular style of scarf. Table $3.1$ and Figure $3.20$ provide examples of a table and chart with low data-ink ratios used to display sales of this style of scarf. The data used in this table and figure represent product sales by day. Both of these examples are similar to tables and charts generated with Excel using common default settings. In Table 3.1, most of the gridlines serve no useful purpose. Likewise, in Figure 3.20, the gridlines in the chart add little additional information. In both cases, most of these lines can be deleted without reducing the information conveyed. However, an important piece of information is missing from Figure 3.20: titles for axes. Generally, axes should always be labeled in a chart. There are rare exceptions to this where both the meaning and unit of measure are obvious such as when the axis displays the names of months (i.e., “January,” “February,” “March,” etc.). For most charts, we recommend labeling the axes to avoid the possibility of misinterpretation by the audience and to reduce the cognitive load required by the audience.

## 统计代写|数据可视化代考DATA VISUALIZATION代考|Minimizing Eye Travel

Data visualizations should be easy to view and interpret by the audience. Charts and tables should reveal insights to the audience, while minimizing the cognitive load required of the audience. We can minimize cognitive load by using preattentive attributes and Gestalt principles as well as by increasing the data-ink ratio in our data visualizations. We can also minimize cognitive load by minimizing the eye travel required by the audience.
Consider the Office of Budget and Performance Improvement for the City of Springfield. This city office would like to compare the performance of the two police districts located in its city. One performance metric used by the city is clearance rate, which is the fraction of reported crimes that result in an arrest. Figure $3.25$ compares the clearance rates for property crimes in Springfield’s District 1 and District 2 over the last 6 months.

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。