Posted on Categories:Survey sampling, 抽样调查, 统计代写

统计代写|抽样调查代考SURVEY SAMPLING代考|ST205 Bootstrap in Finite Population Sampling

avatest.org抽样调查Survey sampling代写，免费提交作业要求， 满意后付款，成绩80\%以下全额退款，安全省心无顾虑。专业硕 博写手团队，所有订单可靠准时，保证 100% 原创。avatest.org™， 最高质量的抽样调查Survey sampling作业代写，服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面，考虑到同学们的经济条件，在保障代写质量的前提下，我们为客户提供最合理的价格。 由于统计Statistics作业种类很多，同时其中的大部分作业在字数上都没有具体要求，因此抽样调查Survey sampling作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

avatest.org™ 为您的留学生涯保驾护航 在统计代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计代考服务。我们的专家在抽样调查Survey sampling代写方面经验极为丰富，各种抽样调查Survey sampling相关的作业也就用不着 说。

统计代写|抽样调查代考SURVEY SAMPLING代考|Bootstrap in Finite Population Sampling

For large samples an empirical distribution function converges uniformly with probability one to the underlying true distribution function as proved by Loeve (1977). Efron (1982) draws upon this his strength about the closeness of the simulation-based histograms calculated from SRSWR’s from observed sample-values to the unknowable underlying probability distribution. Such SRSWR’s from observed SRSWR’s from theoretical probability distributions are called ‘bootstrap’ samples. If the bootstrap samples are sufficiently numerous, studying them useful inferences are possible.

In case of sampling finite populations also bootstrap samples may be generated and put to suitable uses though no strong theoretical justifications for them are known to have been established and many results have yet remained heuristic.

Suppose $\theta_{j}=\frac{1}{N} \sum_{i=1}^{N} \xi_{j i}, j=1, \cdots, K$ are finite population totals of $K$ real variables $\xi_{j}(j=1, \cdots K)$ with values $\xi_{j i}$ for the units $i$ of a finite population $U=(1, \cdots, i, \cdots, N)$. Let $\underline{\theta}=\left(\theta_{1}, \cdots, \theta_{j}, \cdots, \theta_{K}\right)$ and $g(\underline{\theta})$ be a nonlinear but a well-bahaved function of $\underline{\theta}$ and our interest be to derive a suitable point estimator for $g(\underline{\theta})$ along with an estimator for its Mean Square Error (MSE) and also to construct a Confidence Interval (CI) for $g(\underline{\theta})$ with a suitably high confidence coefficient $100(1-\alpha) \%$ with $\alpha$ in $(0,1)$. As an alternative to (i) linearization technique, (ii) IPNS, or (iii) jack-knife the ‘sub-sampling replication’ procedure called ‘bootstrap’ sampling is often found handy. The non-linear functions $g(\underline{\theta})$ we find interesting to illustrate are:
(1) finite population correlation coefficient between $y$ and $x$ taken as
$$R_{N}=\frac{N \sum_{1}^{N} y_{i} x_{i}-\left(\sum_{1}^{N} y_{i}\right)\left(\sum_{1}^{N} x_{i}\right)}{\sqrt{N \sum_{1}^{N} y_{i}^{2}-\left(\sum_{1}^{N} y_{i}\right)^{2}} \sqrt{N \sum_{1}^{N} x_{i}^{2}-\left(\sum_{1}^{N} x_{i}\right)^{2}}}$$
with $\theta_{1}=N, \theta_{2}=\sum_{1}^{N} y_{i} x_{i}, \theta_{3}=\sum_{1}^{N} y_{i}, \theta_{4}=\sum_{1}^{N} x_{i}, \theta_{5}=\sum_{1}^{N} y_{i}^{2}$ and $\theta_{6}=\sum_{1}^{N} x_{i}^{2}$

(2) Regression coefficient of $y$ on $x$ as
$$B_{N}=\frac{N \sum_{1}^{N} y_{i} x_{i}-\left(\sum_{1}^{N} y_{i}\right)\left(\sum_{1}^{N} x_{i}\right)}{N \sum_{1}^{N} x_{i}^{2}-\left(\sum x_{i}\right)^{2}}$$
with $\theta_{1}=N, \theta_{2}=\sum_{1}^{N} y_{i} x_{i}, \theta_{3}=\sum_{1}^{N} y_{i}, \theta_{4}=\sum_{1}^{n} x_{i}, \theta_{5}=\sum_{1}^{N} x_{i}^{2}$ and a third one with $\theta_{1}=Y, \theta_{2}=X, \theta_{3}=\sum_{1}^{N} y_{i} x_{i} Q_{i} \pi_{i}$ and $\theta_{4}=\sum_{1}^{N} x_{i}^{2} Q_{i} \pi_{i}$ and $g(\underline{\theta})=\theta_{1}+\frac{\theta_{3}}{\theta_{4}}\left(\theta_{2}-X\right)=Y .$

统计代写|抽样调查代考SURVEY SAMPLING代考|Balanced Repeated Replication

This is a sub-sample replication variance estimating device when encountered to estimate a finite population mean, the core of the procedure is stratified sampling and its main use is in estimation of non-linear finite population parameters like correlation and regression coefficients by non-linear statistics; Chaudhuri and Stenger (2005), Chaudhuri (2010, 2014) also have given useful accounts of this procedure.

In its easiest version a population is supposed to be composed of quite a large number $H$ of strata from each of which an SRSWOR OF size $n_{h}=$ $2, h=1, \cdots, H$ is chosen to unbiasedly estimate the population mean $\bar{Y}=$ $\sum_{h=1}^{H} W_{h} \bar{Y}{h}$ with usual notations $W{h}=\frac{N_{h}}{N}, \bar{Y}{h}, h=1, \cdots, H$, the strata proportions and means. The standard estimator for this is $$\bar{y}{s t}=\sum_{h=1}^{H} W_{h} \bar{y}{h}, \bar{y}{h}=\frac{1}{2}\left(y_{h_{1}}+y_{h_{2}}\right)$$

$$V\left(\bar{y}{s t}\right)=\sum W{h}^{2} \frac{S_{h}^{2}}{n_{h}}, S_{h}^{2}=\frac{1}{\left(N_{h}-1\right)} \sum_{1}^{N_{h}}\left(y_{h_{i}}-\bar{Y}{h}\right)^{2}$$ neglecting the quantity $\frac{n{h}}{N_{h}}=\frac{2}{N_{h}}$ for every $h=1, \cdots, H$. The standard unbiased estimator for this variance is
\begin{aligned} &\nu\left(\bar{y}{s t}\right)=\sum W{h}^{2} \frac{s_{h}^{2}}{n_{h}}, \text { writing } \ &s_{h}^{2}=\frac{1}{n_{h}-1}\left[\left(y_{h_{1}}-\bar{y}{h}\right)^{2}+\left(y{h_{2}}-\bar{y}{h}\right)^{2}\right] \ &\quad=\frac{1}{2} d{h}^{2}, \text { writing } d_{h}=\left(y_{h_{1}}-y_{h_{2}}\right) \ &\nu\left(\bar{y}{s t}\right)=\frac{1}{4} \sum W{h}^{2} d_{h}^{2} . \end{aligned}

统计代写|抽样调查代考SURVEY SAMPLING代考|Bootstrap in Finite Population Sampling

Loeve (1977) 证明，对于大样本，经验分布函数以从概率 1 均匀收敛到䓑在的真实分布函 数。Efron (1982) 利用他的优势，即从观察到的样本值的 SRSWR 计算的基于模拟的直 方图与不可知的潜在概率分布的接近性。来自理论概率分布的观察到的 SRSWR 的此类 SRSWR 称为“引导”样本。如果 bootstrap 样本足够多，则可以通过研究它们得出有用的 推论。

（1）之间的有限总体相关系数 $y$ 和 $x$ 当作
$$R_{N}=\frac{N \sum_{1}^{N} y_{i} x_{i}-\left(\sum_{1}^{N} y_{i}\right)\left(\sum_{1}^{N} x_{i}\right)}{\sqrt{N \sum_{1}^{N} y_{i}^{2}-\left(\sum_{1}^{N} y_{i}\right)^{2}} \sqrt{N \sum_{1}^{N} x_{i}^{2}-\left(\sum_{1}^{N} x_{i}\right)^{2}}}$$

(2) 回归系数 $y$ 上 $x$ 作为
$$B_{N}=\frac{N \sum_{1}^{N} y_{i} x_{i}-\left(\sum_{1}^{N} y_{i}\right)\left(\sum_{1}^{N} x_{i}\right)}{N \sum_{1}^{N} x_{i}^{2}-\left(\sum x_{i}\right)^{2}}$$

$\theta_{1}=Y, \theta_{2}=X, \theta_{3}=\sum_{1}^{N} y_{i} x_{i} Q_{i} \pi_{i}$ 和 $\theta_{4}=\sum_{1}^{N} x_{i}^{2} Q_{i} \pi_{i}$ 和
$g(\theta)=\theta_{1}+\frac{\theta_{3}}{\theta_{4}}\left(\theta_{2}-X\right)=Y$.

统计代写|抽样调查代考SURVEY SAMPLING代考|Balanced Repeated Replication

Chaudhuri 和 Stenger (2005)、Chaudhuri $(2010,2014)$ 也对这一过程给出了有用的说 明。

$W h=\frac{N_{h}}{N}, \bar{Y} h, h=1, \cdots, H$ ，地层比例和均值。标准估计量是
$$\bar{y} s t=\sum_{h=1}^{H} W_{h} \bar{y} h, \bar{y} h=\frac{1}{2}\left(y_{h_{1}}+y_{h_{2}}\right)$$
$$V(\bar{y} s t)=\sum W h^{2} \frac{S_{h}^{2}}{n_{h}}, S_{h}^{2}=\frac{1}{\left(N_{h}-1\right)} \sum_{1}^{N h}\left(y_{h i}-\bar{Y} h\right)^{2}$$

$$\nu(\bar{y} s t)=\sum W h^{2} \frac{s_{h}^{2}}{n_{h}} \text {, writing } \quad s_{h}^{2}=\frac{1}{n_{h}-1}\left[\left(y_{h 1}-\bar{y} h\right)^{2}+\left(y h_{2}-\bar{y} h\right)^{2}\right] \quad=\frac{1}{2} d h^{2}, \text { writing } d_{h}=\left(y_{h 1}-y_{h 2}\right) \quad \nu(\bar{y} s t)=\frac{1}{4} \sum W h^{2} d_{h}^{2} .$$

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。