Posted on Categories:Mathematical Analysis, 数学代写, 数学分析

数学代写|数学分析作业代写Mathematical Analysis代考|MATH7400 Fourier Series and Orthogonal Polynomials

如果你也在 怎样代写数学分析Mathematical Analysis MATH7400这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。数学分析Mathematical Analysis分析学是处理极限和相关理论的数学分支,如微分、积分、度量、序列、数列和分析函数。

数学分析Mathematical Analysis MATH7400这些理论通常是在实数和复数及函数的背景下研究的。分析学是从微积分演变而来的,它涉及到分析学的基本概念和技术。分析可以区别于几何学;然而,它可以应用于任何有近似性定义的数学对象空间(拓扑空间)或对象之间的特定距离(公制空间)。

数学分析Mathematical Analysis作业代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。 最高质量的数学分析Mathematical Analysis作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此数学分析Mathematical Analysis作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试,包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您,创造模拟试题,提供所有的问题例子,以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试,我们都能帮助您!

在不断发展的过程中,avatest™如今已经成长为论文代写,留学生作业代写服务行业的翘楚和国际领先的教育集团。全体成员以诚信为圆心,以专业为半径,以贴心的服务时刻陪伴着您, 用专业的力量帮助国外学子取得学业上的成功。

•最快12小时交付 

•200+ 英语母语导师 

•70分以下全额退款

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

我们在数学Mathematics代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在数学分析Mathematical Analysis代写方面经验极为丰富,各种数学分析Mathematical Analysis相关的作业也就用不着 说。

数学代写|数学分析作业代写Mathematical Analysis代考|MATH7400 Fourier Series and Orthogonal Polynomials

数学代写|数学分析作业代写MATHEMATICAL ANALYSIS代考|Fourier Series and Orthogonal Polynomials

In section $3.7$ we studied the geometry of inner product spaces more than their metric properties. We now have a bigger toolbox with which we can tackle inner product spaces. Before we pose the central questions of this section, let us summarize the highlights of section 3.7, upon which this section rests heavily. Let $\left{u_{1}, u_{2}, \ldots\right}$ be an infinite orthonormal sequence of vectors in an inner product space $H$. The orthogonal projection of an element $x \in H$ on the finite-dimensional space $M_{n}=\operatorname{Span}\left(\left{u_{1}, \ldots, u_{n}\right}\right)$ is, by definition, the vector $S_{n} x=\sum_{i=1}^{n}\left\langle x, u_{i}\right\rangle u_{i}$. We know from theorem 3.7.6 that the vector $S_{n} x$ is the closest vector in $M_{n}$ to $x$, and we also say that $S_{n} x$ is the best approximation of $x$ in $M_{n}$. Now that we have studied convergence in metric spaces, it is natural to ask whether $\lim {n} S{n} x=x$. Unfortunately, we are still not in a position to state an exact set of conditions under which a general answer can be provided because the answer depends on the space $H$ and the sequence $\left{u_{1}, u_{2}, \ldots\right}$. The reader should suspect that completeness is relevant here, and it is. The spaces we study in this section are not complete, and this is precisely the reason we cannot decisively settle the question posed above about the convergence of the sequence $S_{n} x$. In two of the major examples we consider in this section, we will answer this question satisfactorily but not completely. The full picture will materialize in sections $7.2$ and $8.9$.
Fourier series
In section 3.7, we defined the inner product $\langle f, g\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} d x$ on the space $\mathcal{C}[-\pi, \pi]$. The sequence
$$
\left{u_{n}(t)=e^{i n t}: n \in \mathbb{Z}\right}
$$
is an orthonormal sequence with respect to the above inner product. The norm of a function $f$ induced by the inner product will be denoted by $|f|_{2}$ in order to distinguish it from the uniform norm on $\mathcal{C}[-\pi, \pi]$, which will also play a prominent role in this section. Thus the uniform norm of a function $f \in \mathcal{C}[a, b]$ will be denoted by the usual notation $|f|_{\infty}$, while
$$
|f|_{2}=\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{2} d x\right)^{1 / 2} .
$$
It is clear that $|f|_{2} \leq|f|_{\infty}$.

数学代写|数学分析作业代写MATHEMATICAL ANALYSIS代考|The Tchebychev Polynomials

In this special case, we take
$$
(a, b)=(-1,1)
$$
and
$$
\omega(x)=\frac{1}{\sqrt{1-x^{2}}} .
$$
Observe that the space $H$ of square integrable functions with respect to $\omega$ contains the entire space $\mathcal{C}[-1,1]$

A simple and direct derivation of the orthogonal polynomials is possible because of the observation that, for an integer $n \geq 0, \cos (n x)$ can be expressed as a polynomial of $\cos x$. For example, $\cos (2 x)=2 \cos ^{2} x-1$. The next lemma proves the existence of such polynomials and establishes the three-term recurrence relation among them.

数学代写|数学分析作业代写Mathematical Analysis代考|MATH7400 Fourier Series and Orthogonal Polynomials

数学分析代写

数学代写|数学分析作业代写MATHEMATICAL ANALYSIS代考|Fourier Series and Orthogonal Polynomials


在部分 $3.7$ 我们研究了内积空间的几何而不是它们的度量属性。我们现在有一个更大的工具箱,我们可以用它来处理内部产品空 间。在我们提出本节的中心问题之前,让我们总结一下第 $3.7$ 节的重点,这也是本节的重中之重。让
〈left 的分隔符缺失或无法识别 是内积空间中向量的无限正交序列 $H$. 元膆的正交投影 $x \in H$ 在有限维空间上 \left 的分隔符胡失或无法识别 是,根居定义,向量 $S_{n} x=\sum_{i=1}^{n}\left\langle x, u_{i}\right\rangle u_{i}$. 我们从定理 $3.7 .6$ 知道向量
$S_{n} x$ 是最近的向量 $M_{n}$ 至 $x$ ,我们也说 $S_{n} x$ 是的最佳近似值 $x$ 在 $M_{n}$. 现在我们已经研究了度量空间中的收敛性,很自然地要问是否 $\lim n S n x=x$. 不幸的是,我们仍然无法说明可以提供一般箜䅁的确切条件,因为答案取决于空间 $H$ 和序列
\left 的分隔符缺失或无法识别 . 读者应该怀疑完整性在这里是相关的,而且确实如此。本节我们研究的空间 并不完整,这也正是我们无法果断解决上述关于序列收敛的问题的原因 $S_{n} x$. 在本节中我们考虑的两个主要示例中,我们将满意但
不完全地回答䢒个问题。完整的画面将分部分实现 $7.2$ 和 $8.9$.
傅里叶级数
在 3.7 节中,我们定义了内积 $\langle f, g\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} d x$ 在空间上 $\mathcal{C}[-\pi, \pi]$. 序列
《left 的分隔符缺失或无法识别
是关于上述内积的正交序列。函数的范数 $f$ 由内积引起的将表示为 $|f|{2}$ 为了区别于统一规范 $\mathcal{C}[-\pi, \pi]$ ,这也将在本节中发挥突出作 用。因此函数的统一范数 $f \in \mathcal{C}[a, b]$ 将用通常的符号表示 $|f|{\infty}$ ,尽管
$$
|f|{2}=\left(\frac{1}{2 \pi} \int{-\pi}^{\pi}|f(x)|^{2} d x\right)^{1 / 2} .
$$
很清楚 $|f|{2} \leq|f|{\infty}$.


数学代写|数学分析作业代写MATHEMATICAL ANALYSIS代考|The Tchebychev Polynomials


在这种特殊情况下,我们取
$$
(a, b)=(-1,1)
$$

$$
\omega(x)=\frac{1}{\sqrt{1-x^{2}}} .
$$
观崇空间 $H$ 平方可积函数关于 $\omega$ 包含整个空间 $\mathcal{C}[-1,1]$
正交侈项式的简单直接隹导是可能的,因为观崇到,对于整数 $n \geq 0, \cos (n x)$ 可以表示为的多项式 $\cos x$. 例如, $\cos (2 x)=2 \cos ^{2} x-1$.下一个引理证明了这些茤项式的存在,并建立了它们之间的三项递推关系。

数学代写|数学分析作业代写Mathematical Analysis代考

数学代写|数学分析作业代写Mathematical Analysis代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Write a Reply or Comment

您的邮箱地址不会被公开。 必填项已用 * 标注