Posted on Categories:Multivariate Statistical Analysis, 多元统计分析, 统计代写, 统计代考

统计代写|多元统计分析代写Multivariate Statistical Analysis代考|STAT5610 DETECTING OUTLIERS AND CLEANING DATA

如果你也在 怎样代写多元统计分析Multivariate Statistical Analysis STAT5610这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。多元统计分析Multivariate Statistical Analysis是统计学的一个分支,包括同时观察和分析一个以上的结果变量。多变量统计涉及到理解每一种不同形式的多变量分析的不同目的和背景,以及它们之间的关系。多变量统计在某一特定问题上的实际应用可能涉及几种类型的单变量和多变量分析,以了解变量之间的关系以及它们与所研究问题的相关性。

多元统计分析Multivariate Statistical Analysis是基于多变量统计的原理。通常情况下,MVA用于解决对每个实验单元进行多次测量的情况,这些测量之间的关系及其结构很重要。现代的、重叠的MVA分类包括:正态和一般多变量模型和分布理论、关系的研究和测量、多维区域的概率计算、对数据结构和模式的探索、由于希望包括基于物理学的分析,以计算变量对分层 “系统中的系统 “的影响,多变量分析可能变得复杂。通常情况下,希望使用多变量分析的研究会因为问题的维度而停滞。这些问题通常通过使用代理模型来缓解,代理模型是基于物理学的代码的高度精确的近似。由于代用模型采取方程的形式,它们可以被快速评估。这成为大规模MVA研究的一个有利因素:在基于物理学的代码中,整个设计空间的蒙特卡洛模拟是困难的,而在评估代用模型时,它变得微不足道,代用模型通常采取响应面方程式的形式。

多元统计分析Multivariate Statistical Analysis,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。 最高质量的回归分析Regression Analysis作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此多元统计分析Multivariate Statistical Analysis作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试,包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您,创造模拟试题,提供所有的问题例子,以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试,我们都能帮助您!

在不断发展的过程中,avatest™如今已经成长为论文代写,留学生作业代写服务行业的翘楚和国际领先的教育集团。全体成员以诚信为圆心,以专业为半径,以贴心的服务时刻陪伴着您, 用专业的力量帮助国外学子取得学业上的成功。

•最快12小时交付 

•200+ 英语母语导师 

•70分以下全额退款

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

我们在统计Statistics代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在多元统计分析Multivariate Statistical Analysis代写方面经验极为丰富,各种多元统计分析Multivariate Statistical Analysis相关的作业也就用不着 说。

统计代写|多元统计分析代写Multivariate Statistical Analysis代考|STAT5610 DETECTING OUTLIERS AND CLEANING DATA

统计代写|多元统计分析代写Multivariate Statistical Analysis代考|DETECTING OUTLIERS AND CLEANING DATA

Most data sets contain one or a few unusual observations that do not seem to belong to the pattern of variability produced by the other observations. With data on a single characteristic, unusual observations are those that are either very large or very small relative to the others. The situation can be more complicated with multivariate data. Before we address the issue of identifying these outliers, we must emphasize that not all outliers are wrong numbers. They may, justifiably, be part of the group and may lead to a better understanding of the phenomena being studied.
Outliers are best detected visually whenever this is possible. When the number of observations $n$ is large, dot plots are not feasible. When the number of characteristics $p$ is large, the large number of scatter plots $p(p-1) / 2$ may prevent viewing them all. Even so, we suggest first visually inspecting the data whenever possible.

What should we look for? For a single random variable, the problem is one dimensional, and we look for observations that are far from the others. For instance, the dot diagram
reveals a single large observation.
In the bivariate case, the situation is more complicated. Figure $4.10$ on page 201 shows a situation with two unusual observations.

The data point circled in the upper right corner of the figure is removed from the pattern, and its second coordinate is large relative to the rest of the $x_{2}$ measurements, as shown by the vertical dot diagram. The second outlier, also circled, is far from the elliptical pattern of the rest of the points, but, separately, each of its components has a typical value. This outlier cannot be detected by inspecting the marginal dot diagrams.

In higher dimensions, there can be outliers that cannot be detected from the univariate plots or even the bivariate scatter plots. Here a large value of $\left(\mathbf{x}{j}-\overline{\mathbf{x}}\right)^{\prime} \mathbf{S}^{-1}\left(\mathbf{x}{j}-\overline{\mathbf{x}}\right)$ will suggest an unusual observation, even though it cannot be seen visually.

统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Steps for Detecting Outliers

  1. Make a dot plot for each variable.
  2. Make a scatter plot for each pair of variables.
  3. Calculate the standardized values $z_{j k}=\left(x_{j k}-\bar{x}{k}\right) / \sqrt{s{k k}}$ for $j=1,2, \ldots, n$ and each column $k=1,2, \ldots, p$. Examine these standardized values for large or small values.
  4. Calculate the generalized squared distances $\left(\mathbf{x}{j}-\overline{\mathbf{x}}\right)^{\prime} \mathbf{S}^{-1}\left(\mathbf{x}{j}-\overline{\mathbf{x}}\right)$. Examine these distances for unusually large values. In a chi-square plot, these would be the points farthest from the origin.

In step 3, “large” must be interpreted relative to the sample size and number of variables. There are $n \times p$ standardized values. When $n=100$ and $p=5$, there are 500 values. You expect 1 or 2 of these to exceed 3 or be less than $-3$, even if the data came from a multivariate distribution that is exactly normal. As a guideline, $3.5$ might be considered large for moderate sample sizes.

In step 4, “large” is measured by an appropriate percentile of the chi-square distribution with $p$ degrees of freedom. If the sample size is $n=100$, we would expect 5 observations to have values of $d_{j}^{2}$ that exceed the upper fifth percentile of the chi-square distribution. A more extreme percentile must serve to determine observations that do not fit the pattern of the remaining data.

The data we presented in Table $4.3$ concerning lumber have already been cleaned up somewhat. Similar data sets from the same study also contained data on $x_{5}=$ tensile strength. Nine observation vectors, out of the total of 112 , are given as rows in the following table, along with their standardized values.

统计代写|多元统计分析代写Multivariate Statistical Analysis代考|STAT5610 DETECTING OUTLIERS AND CLEANING DATA

多元统计分析代写

统计代写|多元统计分析代写Multivariate Statistical Analysis代 考|DETECTING OUTLIERS AND CLEANING DATA


大多数数据集包含一个或几个不寻常的观察结果,这些观察结果似乎不属于其他观察结果产生的变异模式。对 于单一特征的数据,不寻常的观察是那些相对于其他特征要么非常大要么非常小的观察。对于多变量数据,情 况可能会更加复杂。在我们解决识别这些异常值的问题之前,我们必须强调并非所有异常值都是错误的数字。 他们可能,有理由地成为该群体的一部分,并可能导致对正在研究的现象有更好的理解。
只要有可能,最好用视觉检测异常值。当观察次数 $n$ 很大,点图是不可行的。当特征数 $p$ 大,散点图数量大 $p(p-1) / 2$ 可能会阻止查看它们。即便如此,我们还是建议尽可能先对数据进行目视检查。
我们应该寻找什么? 对于单个随机变量,问题是一维的,我们寻找与其他变量相距甚远的观察值。例如,点图 揭示了一个单一的大观察。
在双变量情况下,情况更加复杂。数字 $4.10$ 在第 201 页上显示了一个有两个不寻常观察结果的情况。
图中右上角圈出的数据点从图案中移除,其第二个坐标相对于其余部分大 $x_{2}$ 测量值,如垂直点图所示。第二个 异常值 (也被圈出) 与其余点的椭圆图客相去甚远,但是,它的每个分量分别具有一个典型值。通过检龺边缘 点图无法检测到此异常值。
在更高维度中,可能存在无法从单变量图甚至双变量散点图中检测到的异常值。这里的值很大 $(\mathbf{x} j-\overline{\mathbf{x}})^{\prime} \mathbf{S}^{-1}(\mathbf{x} j-\overline{\mathbf{x}})$ 将暗示一个不寻営的观察,即使它不能在视觉上看到。


统计代写|多元统计分析代写Multivariate Statistical Analysis代 考|Steps for Detecting Outliers

  1. 为每个变量绘制一个点图。
  2. 为每对变量绘制散点图。
  3. 计算标准化值 $z_{j k}=\left(x_{j k}-\bar{x} k\right) / \sqrt{s k k}$ 为了 $j=1,2, \ldots, n$ 和每一列 $k=1,2, \ldots, p$. 检龺这些标准 化值的大值或小值。
  4. 计算广义平方距离 $(\mathbf{x} j-\overline{\mathbf{x}})^{\prime} \mathbf{S}^{-1}(\mathbf{x} j-\overline{\mathbf{x}})$. 检龺这些距离是否有异常大的值。在卡方图中,这些点是 离原点最远的点。
    在第 3 步中,“大”必须相对于样本大小和变量数室进行解释。有 $n \times p$ 标准化值。什么时候 $n=100$ 和 $p=5$ 有 500 个值。您期望其中 1 或 2 个超过 3 或小于 $-3$ ,即使数据来自完全正态的多元分布。作为指导方针, $3.5$ 对于中等样本量,可能会被认为是大的。
    在第 4 步中,“大”是通过卡方分布的适当百分位数来衡量的 $p$ 自由程度。如果样本量为 $n=100$ ,我们预计 5 个观测值的值为 $d_{j}^{2}$ 超过卡方分布的上五分位数。必须使用更极端的百分位数来确定不符合剩余数据模式的观察 结果。
    我们在表中提供的数据 $4.3$ 关于木材已经清理了一些。来自同一研究的类似数据集也包含关于 $x_{5}=$ 抗拉强度。 总共 112 个观察向量中的 9 个观察向量在下表中以行的形式给出,以及它们的标准化值。
统计代写|多元统计分析代写Multivariate Statistical Analysis代考

统计代写|多元统计分析代写Multivariate Statistical Analysis代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Write a Reply or Comment

您的电子邮箱地址不会被公开。 必填项已用 * 标注