Posted on Categories:Probability and Statistics, 概率与统计, 统计代写, 统计代考

统计代写|概率与统计代考Probability and Statistics代写|MATH352 INTRODUCTION

如果你也在 怎样代写概率与统计Probability and Statistics MATH352这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。概率与统计Probability and Statistics这些概念在概率论中被赋予了公理化的数学形式,被广泛用于统计、数学、科学、金融、赌博、人工智能、机器学习、计算机科学、博弈论和哲学等研究领域,例如,对事件的预期频率进行推断。概率理论也被用来描述复杂系统的基本力学和规律性。

概率与统计Probability and Statistics概率是数学的一个分支,涉及到对一个事件发生的可能性的数字描述,或者一个命题是真的可能性有多大。一个事件的概率是一个介于0和1之间的数字,大致上说,0表示事件不可能发生,1表示肯定发生。一个简单的例子是抛出一枚公平(无偏见)的硬币。由于硬币是公平的,两种结果(”正面 “和 “反面”)的概率相同;”正面 “的概率等于 “反面 “的概率;由于没有其他结果,”正面 “或 “反面 “的概率是1/2(也可以写成0.5或50%)。

概率与统计Probability and Statistics代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。最高质量的概率与统计Probability and Statistics作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此概率与统计Probability and Statistics作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试,包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您,创造模拟试题,提供所有的问题例子,以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试,我们都能帮助您!

在不断发展的过程中,avatest™如今已经成长为论文代写,留学生作业代写服务行业的翘楚和国际领先的教育集团。全体成员以诚信为圆心,以专业为半径,以贴心的服务时刻陪伴着您, 用专业的力量帮助国外学子取得学业上的成功。

•最快12小时交付 

•200+ 英语母语导师 

•70分以下全额退款

统计代写|概率与统计代考Probability and Statistics代写|MATH352 INTRODUCTION

统计代写|概率与统计代考Probability and Statistics代写|INTRODUCTION

Consider a situation where we want to evaluate the probability $P(A)$ of some event $A$. Suppose that after finding $P(A)$, we learn that some other event, $B$, occurred. In many cases, such an information leads to a change in the assessment of the probability of the event $A$. The symbol used for this new probability will be $P(A \mid B)$, to be read “conditional probability of $A$, given $B$,” or “probability of event $A$, given that $B$ occurred.”
EXAMPLE $4.1$
Conditional probabilities are most easily interpreted as probabilities in subpopulations. Consider an attribute such as color blindness, known to occur much more often among men than among women. If $D$ is the event “a randomly selected person is color blind,” then $P(D)$ refers to the chance of color blindness in the whole population. Suppose now that the person selected is known to be a woman (event $W$ ). This information changes the assessment of probability of color blindness to $P(D \mid W)$, which is now the probability of color blindness in the subpopulation of women.
Questions that might arise here are the following:

How to use data on probabilities of color blindness separately among men and women to find the overall chance of color blindness, that is, to find $P(D)$ if we know $P(D \mid W)$ and $P(D \mid M)$ ?

How to find the probability that a randomly selected color blind person is a woman, that is, $P(W \mid D)$ ?

The first of these questions requires using the weighted average, usually referred to as the formula for total probability (Section 4.3). To answer the second question, one has to use the Bayes’ formula (Section 4.4).
The examples and exercises in this chapter are designed to provide practice in recognizing which probabilities are conditional and which are not.

统计代写|概率与统计代考Probability and Statistics代写|PROBLEMS

A computer file contains data on households in a certain city. Each entry line in this file contains various information about one household: income, socioeconomic status, number of children, their ages, and so on. One data line can then be selected at random (each line has the same probability of being selected). Consequently, probabilities of various events are interpretable as relative frequencies of entries in the data file with the corresponding property.

Let $X, Y$, and $Z$ be, respectively, the numbers of boys, girls, and cars in the households sampled. Let $A$ be the event that a household has a TV set, and let $B$ be the event that it has a swimming pool.
(i) Interpret the probabilities below as relative frequencies of occurrence of some attributes in certain subpopulations. (a) $P(A)$. (b) $P(A \mid Z>0)$. (c) $P(Z>0 \mid A)$. (d) $P(X=0 \mid X+Y=3)$. (e) $P\left(B \mid A^c\right)$. (f) $P\left[(X+Y=0)^c \mid A \cap B\right]$. (g) $P(X Y=$ $0 \mid X+Y>1)$
(ii) Use symbols to express probabilities corresponding to the following relative frequencies: (a) Relative frequency of households with two cars. (b) Relative frequency of households with no children among households with at least one car. (c) Relative frequency of households that have both a swimming pool and a TV set, among those who have either a swimming pool or a TV set and have at least one car.

统计代写|概率与统计代考Probability and Statistics代写|MATH352 INTRODUCTION

概率与统计代写

统计代写|概率与统计代考概率统计代写|简介

.


考虑这样一种情况,我们想要评估某个事件$A$的概率$P(A)$。假设在找到$P(A)$之后,我们了解到发生了其他一些事件$B$。在许多情况下,这样的信息会导致对事件发生概率$A$的评估发生变化。用于这个新概率的符号将是$P(A \mid B)$,读作“假设$B$, $A$的条件概率”,或“假设$B$发生,事件$A$的概率”。
EXAMPLE $4.1$
条件概率最容易解释为亚总体中的概率。以色盲为例,男性比女性更容易患上色盲。如果$D$是事件“一个随机选择的人是色盲”,那么$P(D)$指的是整个人口中色盲的几率。假设现在被选中的人是已知的女性(事件$W$)。这一信息将色盲概率的评估改为$P(D \mid W)$,现在是女性亚人群中色盲的概率。这里可能出现的问题如下:

如何分别使用男女色盲概率的数据来寻找色盲的总体概率,即如果我们知道$P(D \mid W)$和$P(D \mid M)$,就可以找到$P(D)$

如何找出随机选取的色盲者为女性的概率,即$P(W \mid D)$


第一个问题需要使用加权平均值,通常称为总概率公式(第4.3节)。要回答第二个问题,必须使用贝叶斯公式(第4.4节)。
本章中的例子和练习旨在提供识别哪些概率是有条件的,哪些不是的练习

统计代写|概率与统计代考概率与统计代写|PROBLEMS

.


一个计算机文件包含某城市家庭的数据。该文件中的每一行都包含关于一个家庭的各种信息:收入、社会经济地位、孩子的数量、他们的年龄等等。然后可以随机选择一条数据线(每条数据线被选中的概率相同)。因此,各种事件的概率可以解释为数据文件中具有相应属性的条目的相对频率

让 $X, Y$,以及 $Z$ 分别是抽样家庭中男孩、女孩和汽车的数量。让 $A$ 如果一户人家有了电视机,就可以让 $B$ (i)将下面的概率解释为某些属性在某些亚群体中出现的相对频率。(a) $P(A)$。(b) $P(A \mid Z>0)$。(c) $P(Z>0 \mid A)$。(d) $P(X=0 \mid X+Y=3)$。(e) $P\left(B \mid A^c\right)$。(f) $P\left[(X+Y=0)^c \mid A \cap B\right]$。(g) $P(X Y=$ $0 \mid X+Y>1)$
(ii)用符号表示对应于下列相对频率的概率:(a)拥有两辆汽车的家庭的相对频率。(b)至少拥有一辆汽车的家庭中没有子女的家庭的相对频率。(c)同时拥有游泳池和电视机的家庭的相对频率,在那些既拥有游泳池又拥有电视机并且至少拥有一辆汽车的家庭中

统计代写|概率与统计代考Probability and Statistics代写

统计代写|概率与统计代考Probability and Statistics代写 请认准exambang™. exambang™为您的留学生涯保驾护航。

在当今世界,学生正面临着越来越多的期待,他们需要在学术上表现优异,所以压力巨大。

avatest.org 为您提供可靠及专业的论文代写服务以便帮助您完成您学术上的需求,让您重新掌握您的人生。我们将尽力给您提供完美的论文,并且保证质量以及准时交稿。除了承诺的奉献精神,我们的专业写手、研究人员和校对员都经过非常严格的招聘流程。所有写手都必须证明自己的分析和沟通能力以及英文水平,并通过由我们的资深研究人员和校对员组织的面试。

其中代写论文大多数都能达到A,B 的成绩, 从而实现了零失败的目标。

这足以证明我们的实力。选择我们绝对不会让您后悔,选择我们是您最明智的选择!

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Write a Reply or Comment

您的电子邮箱地址不会被公开。 必填项已用 * 标注