Posted on Categories:Complex Network, 复杂网络, 数据科学代写, 统计代写, 统计代考

数据科学代写|复杂网络代写Complex Network代考|PCS810

如果你也在 怎样代写复杂网络Complex Network 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。复杂网络Complex Network在网络理论的背景下,复杂网络是指具有非微观拓扑特征的图(网络)–这些特征在简单的网络(如格子或随机图)中不会出现,但在代表真实系统的网络中经常出现。复杂网络的研究是一个年轻而活跃的科学研究领域(自2000年以来),主要受到现实世界网络的经验发现的启发,如计算机网络、生物网络、技术网络、大脑网络、气候网络和社会网络。

复杂网络Complex Network大多数社会、生物和技术网络显示出实质性的非微观拓扑特征,其元素之间的连接模式既不是纯粹的规则也不是纯粹的随机。这些特征包括学位分布的重尾、高聚类系数、顶点之间的同态性或异态性、社区结构和层次结构。在有向网络的情况下,这些特征还包括互惠性、三联体重要性概况和其他特征。相比之下,过去研究的许多网络的数学模型,如格子和随机图,并没有显示这些特征。最复杂的结构可以由具有中等数量相互作用的网络实现。这与中等概率获得最大信息含量(熵)的事实相对应。

复杂网络Complex Network代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。最高质量的复杂网络Complex Network作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此复杂网络Complex Network作业代写的价格不固定。通常在专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试,包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您,创造模拟试题,提供所有的问题例子,以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试,我们都能帮助您!

在不断发展的过程中,avatest™如今已经成长为论文代写,留学生作业代写服务行业的翘楚和国际领先的教育集团。全体成员以诚信为圆心,以专业为半径,以贴心的服务时刻陪伴着您, 用专业的力量帮助国外学子取得学业上的成功。

•最快12小时交付 

•200+ 英语母语导师 

•70分以下全额退款

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

我们在统计Statistics代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在复杂网络Complex Network代写方面经验极为丰富,各种复杂网络Complex Network相关的作业也就用不着说。

数据科学代写|复杂网络代写Complex Network代考|PCS810

数据科学代写|复杂网络代写Complex Network代考|Theoretical Limits of Community Detection

With the results of the last section it is now possible to start explaining Fig. 4.5 and to give a limit to which extent a designed community structure in a network can be recovered. As was shown, for any random network one can find an assignment of spins into communities that leads to a modularity $Q>0$. For the computer-generated test networks with $\langle k\rangle=16$ one has a value of $p=\langle k\rangle /(N-1)=0.126$ and expects a value of $Q=0.227$ according to (4.15) and $Q=0.262$ according to (4.22). The modularity of the community structure built in by design is given by
$$
Q\left(\left\langle k_{i n}\right\rangle\right)=\frac{\left\langle k_{i n}\right\rangle}{\langle k\rangle}-\frac{1}{4}
$$
for a network of four equal sized groups of 32 nodes. Hence, below $\left\langle k_{i n}\right\rangle=8$, one has a designed modularity that is smaller than what can be expected from a random network of the same connectivity! This means that the minimum in the energy landscape corresponding to the community structure that was designed is shallower than those that one can find in the energy landscape defined by any network. It must be understood that in the search for the builtin community structure, one is competing with those community structures that arise from the fact that one is optimizing for a particular quantity in a very large search space. In other words, any network possesses a community structure that exhibits a modularity at least as large as that of a completely random network. If a community structure is to be recovered reliably, it must be sufficiently pronounced in order to win the comparison with the structures arising in random networks. In the case of the test networks employed here, there must be more than $\approx 8$ intra-community links per node. Figure 4.12 again exemplifies this. Observe that random networks with $\langle k\rangle=16$ are expected to show a ratio of internal and external links $k_{\text {in }} / k_{\text {out }} \approx 1$. Networks which are considerably sparser have a higher ratio while denser networks have a much smaller ratio. This means that in dense networks one can recover designed community structure down to relatively smaller $\left\langle k_{i n}\right\rangle$. Consider for example large test networks with $\langle k\rangle=100$ with four built-in communities. For such networks one expects a modularity of $Q \approx 0.1$ and hence the critical value of intra-community links to which the community structure could reliably be estimated would be $\left\langle k_{i n}\right\rangle_c=35$ which is much smaller in relative comparison to the average degree in the network.

数据科学代写|复杂网络代写Complex Network代考|Analytical Developments

Let us recall the modularity Hamiltonian:
$$
\mathcal{H}=-\sum_{i<j}\left(A_{i j}-\gamma p_{i j}\right) \delta\left(\sigma_i, \sigma_j\right) .
$$
For convenience, instead of a Potts model with $q$ different spin states, the discussion is limited to only two spin states as in the Ising model, namely $S_i \in-1,1$. The delta function in (5.1) can be expressed as
$$
\delta\left(S_i, S_j\right)=\frac{1}{2} S_i S_j+\frac{1}{2},
$$
which leads to the new Hamiltonian
$$
\mathcal{H}=-\sum_{i<j}\left(A_{i j}-\gamma p_{i j}\right) S_i S_j .
$$
Note that (5.3) differs from (5.1) only by an irrelevant constant which even vanishes for $\gamma=1$ due to the normalization of $p_{i j}$. Because of the factor $1 / 2$ in (5.2), the modularity of the partition into two communities is now and for the remainder of this chapter
$$
Q_2=-\frac{\mathcal{H}}{2 M},
$$
where $\mathcal{H}$ now denotes the Hamiltonian (5.3). For the number of cut edges of the partition one can write
$$
\mathcal{C}=\frac{1}{2}\left(M+E_g\right)=\frac{M}{2}\left(1-2 Q_2\right),
$$
with $E_g$ denoting the ground state energy of (5.3) and it is clear that $Q_2$ measures the improvement of the partition over a random assignment into groups.

Formally, (5.3) corresponds to a Sherrington-Kirkpatrick (SK) model of a spin glass [3]
$$
\mathcal{H}=-\sum_{i<j} J_{i j} S_i S_j,
$$
with couplings of the form
$$
J_{i j}=\left(A_{i j}-\gamma p_{i j}\right) .
$$


Technology and creativity process theme lineart vector illustration. Eps8. All design elements are layered and grouped.

复杂网络代写

数据科学代写|复杂网络代写Complex Network代考|Theoretical Limits of Community Detection

根据上一节的结果,现在可以开始解释图4.5,并给出网络中设计的社区结构可以恢复的程度的限制。如所示,对于任何随机网络,都可以找到将自旋分配到导致模块化$Q>0$的社区。对于具有$\langle k\rangle=16$的计算机生成的测试网络,one的值为$p=\langle k\rangle /(N-1)=0.126$,根据(4.15)和(4.22)期望的值分别为$Q=0.227$和$Q=0.262$。设计中内置的社区结构的模块化是由
$$
Q\left(\left\langle k_{i n}\right\rangle\right)=\frac{\left\langle k_{i n}\right\rangle}{\langle k\rangle}-\frac{1}{4}
$$
对于一个由四个相同大小的32个节点组成的网络。因此,在$\left\langle k_{i n}\right\rangle=8$下面,一个设计的模块化比相同连接的随机网络所期望的要小!这意味着与所设计的社区结构相对应的能量景观中的最小值比任何网络定义的能量景观中的最小值都要浅。必须理解的是,在搜索内置社区结构时,人们正在与那些社区结构竞争,这些社区结构是由于在非常大的搜索空间中对特定数量进行优化而产生的。换句话说,任何网络都具有社区结构,其模块化程度至少与完全随机网络一样大。如果要可靠地恢复社区结构,它必须足够明显,以便与随机网络中产生的结构进行比较。在这里使用的测试网络的情况下,每个节点必须有超过$\approx 8$的社区内链接。图4.12再次说明了这一点。观察到,具有$\langle k\rangle=16$的随机网络预计会显示内部和外部链接$k_{\text {in }} / k_{\text {out }} \approx 1$的比例。相对稀疏的网络具有更高的比率,而密集的网络具有更小的比率。这意味着在密集的网络中,人们可以将设计的社区结构恢复到相对较小的$\left\langle k_{i n}\right\rangle$。例如,考虑带有$\langle k\rangle=100$和四个内置社区的大型测试网络。对于这样的网络,人们期望模块化为$Q \approx 0.1$,因此社区内链接的临界值可以可靠地估计社区结构将是$\left\langle k_{i n}\right\rangle_c=35$,这与网络中的平均程度相比要小得多。

数据科学代写|复杂网络代写Complex Network代考|Analytical Developments

让我们回顾一下模性哈密顿量:
$$
\mathcal{H}=-\sum_{i<j}\left(A_{i j}-\gamma p_{i j}\right) \delta\left(\sigma_i, \sigma_j\right) .
$$
为方便起见,我们不再使用具有$q$不同自旋状态的Potts模型,而是像Ising模型一样,只讨论两个自旋状态,即$S_i \in-1,1$。式(5.1)中的函数可表示为
$$
\delta\left(S_i, S_j\right)=\frac{1}{2} S_i S_j+\frac{1}{2},
$$
这就引出了新的汉密尔顿式
$$
\mathcal{H}=-\sum_{i<j}\left(A_{i j}-\gamma p_{i j}\right) S_i S_j .
$$
请注意,(5.3)与(5.1)的区别仅在于一个不相关的常数,由于$p_{i j}$的规范化,该常数甚至在$\gamma=1$中消失。由于(5.2)中的因子$1 / 2$,现在和本章的其余部分将划分为两个社区的模块化
$$
Q_2=-\frac{\mathcal{H}}{2 M},
$$
其中$\mathcal{H}$现在表示哈密顿量(5.3)。对于可以写入的分区切割边的数量
$$
\mathcal{C}=\frac{1}{2}\left(M+E_g\right)=\frac{M}{2}\left(1-2 Q_2\right),
$$
$E_g$表示(5.3)的基态能量,很明显,$Q_2$测量了随机分配到组上的分区的改进。

形式上,(5.3)对应于自旋玻璃的谢林顿-柯克帕特里克(SK)模型[3]
$$
\mathcal{H}=-\sum_{i<j} J_{i j} S_i S_j,
$$
有这种形式的联轴器
$$
J_{i j}=\left(A_{i j}-\gamma p_{i j}\right) .
$$

数据科学代写|复杂网络代写Complex Network代考

数据科学代写|复杂网络代写Complex Network代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

微观经济学代写

微观经济学是主流经济学的一个分支,研究个人和企业在做出有关稀缺资源分配的决策时的行为以及这些个人和企业之间的相互作用。my-assignmentexpert™ 为您的留学生涯保驾护航 在数学Mathematics作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的数学Mathematics代写服务。我们的专家在图论代写Graph Theory代写方面经验极为丰富,各种图论代写Graph Theory相关的作业也就用不着 说。

线性代数代写

线性代数是数学的一个分支,涉及线性方程,如:线性图,如:以及它们在向量空间和通过矩阵的表示。线性代数是几乎所有数学领域的核心。

博弈论代写

现代博弈论始于约翰-冯-诺伊曼(John von Neumann)提出的两人零和博弈中的混合策略均衡的观点及其证明。冯-诺依曼的原始证明使用了关于连续映射到紧凑凸集的布劳威尔定点定理,这成为博弈论和数学经济学的标准方法。在他的论文之后,1944年,他与奥斯卡-莫根斯特恩(Oskar Morgenstern)共同撰写了《游戏和经济行为理论》一书,该书考虑了几个参与者的合作游戏。这本书的第二版提供了预期效用的公理理论,使数理统计学家和经济学家能够处理不确定性下的决策。

微积分代写

微积分,最初被称为无穷小微积分或 “无穷小的微积分”,是对连续变化的数学研究,就像几何学是对形状的研究,而代数是对算术运算的概括研究一样。

它有两个主要分支,微分和积分;微分涉及瞬时变化率和曲线的斜率,而积分涉及数量的累积,以及曲线下或曲线之间的面积。这两个分支通过微积分的基本定理相互联系,它们利用了无限序列和无限级数收敛到一个明确定义的极限的基本概念 。

计量经济学代写

什么是计量经济学?
计量经济学是统计学和数学模型的定量应用,使用数据来发展理论或测试经济学中的现有假设,并根据历史数据预测未来趋势。它对现实世界的数据进行统计试验,然后将结果与被测试的理论进行比较和对比。

根据你是对测试现有理论感兴趣,还是对利用现有数据在这些观察的基础上提出新的假设感兴趣,计量经济学可以细分为两大类:理论和应用。那些经常从事这种实践的人通常被称为计量经济学家。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Write a Reply or Comment

您的电子邮箱地址不会被公开。 必填项已用 * 标注