Posted on Categories:Mathematical logic, 数学代写, 数理逻辑

## avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试，包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您，创造模拟试题，提供所有的问题例子，以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试，我们都能帮助您！

•最快12小时交付

•200+ 英语母语导师

•70分以下全额退款

## 数学代写|数理逻辑入门代写Introduction To Mathematical logic代考|The Relationship Between Enumerability and Decidability

We have just seen that the set of “logically true” sentences can be listed by means of an enumeration procedure. Is it possible to go farther than this and decide whether an arbitrary given sentence is “logically true”? The enumeration procedure given above does not help to solve this problem. For example, if we want to test a sentence $\varphi$ for validity we might start the enumeration procedure in 1.6 and wait to see whether $\varphi$ appears; we obtain a positive decision as soon as $\varphi$ is added to the list. But as long as $\varphi$ has not appeared, we cannot say anything about $\varphi$, since we do not know whether $\varphi$ will never appear (because it is not valid) or whether it will appear at a later time. In fact, we shall show (cf. Theorem 4.1) that the set of valid $S_{\infty}$-sentences is not decidable.
On the other hand, if a set is decidable, we can conclude that it is enumerable:
Theorem. Every decidable set is enumerable.
Proof. Suppose $W \subseteq \mathbb{A}^$ is decidable and $\mathfrak{P}$ is a decision procedure for $W$. To list $W$, generate the strings of $\mathbb{A}^$ in lexicographic order, use $\mathfrak{P}$ to check for each string $\zeta$ thus obtained whether it belongs to $W$ or not, and, if the answer is positive, add $\zeta$ to the list.

## 数学代写|数理逻辑入门代写Introduction To Mathematical logic代考|Computable Functions

Let $\mathbb{A}$ and $\mathbb{B}$ be alphabets. A procedure that for each input from $\mathbb{A}^$ yields a word in $\mathbb{B}^$ determines a function from $\mathbb{A}^$ to $\mathbb{B}^$. A function whose values can be computed in this way by a procedure is said to be computable. An example of a computable function is the length function $l$, which assigns to every $\zeta \in \mathbb{A}^*$ the length of $\zeta$ (in decimal notation as a word over ${0, \ldots, 9}$ ).

Whereas our discussion of procedures deals mainly with the notions of enumerability and decidability, many presentations of the theory of computability start with the computability of functions as the key concept. Both approaches are equivalent in the sense that the above notions are definable from each other. The following exercise shows that the notion of computable function can be reduced to both the notion of enumerability and the notion of decidability.

1.12 Exercise. Let $\mathbb{A}$ and $\mathbb{B}$ be alphabets, $# \notin \mathbb{A} \cup \mathbb{B}$ and $f: \mathbb{A}^* \rightarrow \mathbb{B}^$. Show that the following are equivalent: (i) $f$ is computable. (ii) $\left{\zeta # f(\zeta) \mid \zeta \in \mathbb{A}^\right}$ is enumerable.
(iii) $\left{\zeta # f(\zeta) \mid \zeta \in \mathbb{A}^\right}$ is decidable. The set $\left{\zeta # f(\zeta) \mid \zeta \in \mathbb{A}^\right}$ can be considered as the graph of $f$, and hence the equivalences in 1.12 can be formulated as follows: A function $f: \mathbb{A}^* \rightarrow \mathbb{B}^*$ is computable if and only if its graph is enumerable (decidable).

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Posted on Categories:Algebraic Number Theory, 代数数论, 数学代写

## avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试，包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您，创造模拟试题，提供所有的问题例子，以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试，我们都能帮助您！

•最快12小时交付

•200+ 英语母语导师

•70分以下全额退款

## 数学代写|代数数论代写Algebraic Number Theory代考|Dirichlet’s L-Functions

Let $m$ be a natural number and $\chi$ a Dirichlet character $\bmod m$. That is, $\chi$ is a homomorphism
$$\chi:(\mathbb{Z} / m \mathbb{Z})^* \rightarrow \mathbb{C}^* .$$
We extend the definition of $\chi$ to all natural numbers by setting
$$\chi(a)= \begin{cases}\chi(a \bmod m) & \text { if }(a, m)=1, \ 0 & \text { otherwise }\end{cases}$$
Now define the Dirichlet $L$-function:
$$L(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} .$$
Exercise 10.3.1 Show that $L(s, \chi)$ converges absolutely for $\operatorname{Re}(s)>1$.
Exercise 10.3.2 Prove that
$$\left|\sum_{n \leq x} \chi(n)\right| \leq m .$$
Exercise 10.3.3 If $\chi$ is nontrivial, show that $L(s, \chi)$ extends to an analytic function for $\operatorname{Re}(s)>0$.
Exercise 10.3.4 For $\operatorname{Re}(s)>1$, show that
$$L(s, \chi)=\prod_p\left(1-\frac{\chi(p)}{p^s}\right)^{-1}$$

## 数学代写|代数数论代写Algebraic Number Theory代考|Primes in Arithmetic Progressions

In this section we will establish the infinitude of primes $p \equiv a(\bmod m)$ for any $a$ coprime to $m$.

Lemma 10.4.1 Let $\left{a_n\right}$ be a sequence of nonnegative numbers. There exists a $\sigma_0 \in \mathbb{R}$ (possibly infinite) such that
$$f(s)=\sum_{n=1}^{\infty} \frac{a_n}{n^s}$$
converges for $\sigma>\sigma_0$ and diverges for $\sigma<\sigma_0$. Moreover, if $s \in \mathbb{C}$, with $\operatorname{Re}(s)>\sigma_0$, then the series converges uniformly in $\operatorname{Re}(s) \geq \sigma_0+\delta$ for any $\delta>0$ and
$$f^{(k)}(s)=(-1)^k \sum_{n=1}^{\infty} \frac{a_n(\log n)^k}{n^s}$$
for $\operatorname{Re}(s)>\sigma_0$. ( $\sigma_0$ is called the abscissa of convergence of the (Dirichlet) series $\sum_{n=1}^{\infty} a_n n^{-s}$.)

## 数学代写|代数数论代写Algebraic Number Theory代考|Dirichlet’s L-Functions

$$\chi:(\mathbb{Z} / m \mathbb{Z})^* \rightarrow \mathbb{C}^* .$$

$$\chi(a)={\chi(a \bmod m) \quad \text { if }(a, m)=1,0 \quad \text { otherwise }$$

$$L(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} .$$

$$\left|\sum_{n \leq x} \chi(n)\right| \leq m .$$

$$L(s, \chi)=\prod_p\left(1-\frac{\chi(p)}{p^s}\right)^{-1}$$

## 数学代写|代数数论代写Algebraic Number Theory代考|Primes in Arithmetic Progressions

$$f(s)=\sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

$$f^{(k)}(s)=(-1)^k \sum_{n=1}^{\infty} \frac{a_n(\log n)^k}{n^s}$$

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

Posted on Categories:Mathematical logic, 数学代写, 数理逻辑

## avatest™帮您通过考试

avatest™的各个学科专家已帮了学生顺利通过达上千场考试。我们保证您快速准时完成各时长和类型的考试，包括in class、take home、online、proctor。写手整理各样的资源来或按照您学校的资料教您，创造模拟试题，提供所有的问题例子，以保证您在真实考试中取得的通过率是85%以上。如果您有即将到来的每周、季考、期中或期末考试，我们都能帮助您！

•最快12小时交付

•200+ 英语母语导师

•70分以下全额退款

## 数学代写|数理逻辑代写Mathematical logic代考|Extensions by Definitions

In some of the previous examples we dealt with two axiom systems: the axiom systems $\Phi_{\mathrm{g}}$ and $\Phi_{\text {grp }}$ for group theory (part A), and the axiom systems $\Phi_{\text {ord }}$ and $\Phi_{\text {ord }}^{\prime}$ for orderings (part B).

Usually mathematicians do not work with two or more symbol sets for one and the same theory, but consider a single underlying symbol set which possibly is ex- tended by “defined” symbols. Thus, in group theory one can start with the symbol set $S_{\mathrm{g}}={0}$ and extend it to $S_{\mathrm{grp}}=\left{0,{ }^{-1}, e\right}$ by the defined symbols for the inverse function and the unit element. For orderings one can start with $S={<}$ and extend $S$ to $S^{\prime}={<, \leq}$ by the defined symbol $\leq$. We proceeded in the same way when discussing set theory in Section VII.3; there we extended the symbol set $S={\boldsymbol{\varepsilon}}$ successively by the defined symbols $\boldsymbol{\theta}, \cap, \cup \ldots$ Our goal in this section is to analyze these extensions by definitions. To clarify our intuitive expectation and to explain the idea, we take the transition from $S_{\mathrm{g}}={0}$ to $S_{\mathrm{gr}}={0, e}$ in the example from group theory. We use $x, y, z$ for $v_0, v_1, v_2$.

The starting point is the axiom system $\Phi_{\mathrm{g}} \subseteq L_0^{S_{\mathrm{g}}}$. We notice that the unit element is uniquely determined, namely
$$\Phi_{\mathrm{g}} \models \exists^{=1} x \forall y y \circ x \equiv y$$

## 数学代写|数理逻辑代写Mathematical logic代考|Theorem on Definitions

Theorem on Definitions. Let $\Phi$ be a set of $S$-sentences, $s$ a new symbol, $\delta_s$ an $S$-definition of $s$ in $\Phi$ and I the associated syntactic interpretation of $S \cup{s}$ in $S$. Then:
(a) For all $\varphi \in L_0^S$,
$$\Phi \cup\left{\delta_s\right} \models \varphi \quad \text { iff } \quad \Phi \models \varphi .$$
(b) For all $\chi \in L_0^{S \cup{s}}$,
$$\Phi \cup\left{\delta_s\right} \models \chi \leftrightarrow \chi^I$$
(c) For all $\varphi \in L_0^{S \cup{s}}$,
$$\Phi \cup\left{\delta_s\right}=\varphi \quad \text { iff } \quad \Phi \models \varphi^I .$$
Proof. (a) For the proof of the non-trivial direction, assume that $\Phi \cup\left{\delta_s\right} \models \varphi$, and let $\mathfrak{A}$ be an $S$-structure with $\mathfrak{A}=\Phi$. By $(), \mathfrak{A}^{-I}$ is defined, say $\mathfrak{A}^{-I}=\left(\mathfrak{A}, s^A\right)$. Then by $( )$ it follows that $\left(\mathfrak{A}, s^A\right) \models \Phi \cup\left{\delta_s\right}$, therefore by assumption $\left(\mathfrak{A}, s^A\right) \models \varphi$, and hence $\mathfrak{A} \models \varphi$ by the Coincidence Lemma III.4.6. (b) Let $\chi \in L_0^{S \cup{s}}$ and let $\left(\mathfrak{A}, s^A\right)$ be an $(S \cup{s})$-structure such that $$\left(\mathfrak{A}, s^A\right) \models \Phi \cup\left{\delta_s\right} .$$ By the Theorem $2.2$ on Syntactic Interpretations, the following holds for the structure $\mathfrak{A}^{-1}\left(=\left(\mathfrak{A}, s^A\right) ;\right.$ cf. $\left.( *)\right)$ :
$$\begin{array}{lll} \left(\mathfrak{A}, s^A\right) \models \chi \quad & \text { iff } & \mathfrak{A} \models \chi^I \ & \text { iff } \quad\left(\mathfrak{A}, s^A\right) \models \chi^I \end{array}$$
(c) This easily follows from (a) and (b).

## 数学代写|数理逻辑代写Mathematical logic代考|Extensions by Definitions

$$\Phi_{\mathrm{g}} \models \exists^{-1} x \forall y y \circ x \equiv y$$

## 数学代写|数理逻辑代写Mathematical logic代考|Theorem on Definitions

(a) 对于所有人 $\varphi \in L_0^S$,
\left 的分隔符忤失或无法识别
(b) 对所有人 $\chi \in L_0^{S \cup s}$,
〈left 的分隔符缺失或无法识别
(c) 对所有人 $\varphi \in L_0^{S \cup s}$ ，
\left 的分隔符忤失或无法识别

\left 的分隔符缺失或无法识别

$$\left(\mathfrak{A}, s^A\right) \models \chi \quad \text { iff } \quad \mathfrak{A} \models \chi^I \quad \text { iff } \quad\left(\mathfrak{A}, s^A\right) \models \chi^I$$
(c) 这很容易从 (a) 和 (b) 得出。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。